
The Right Process For Each Context:
Objective Evidence Needed

Ove Armbrust
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

+49 631 6800 2259
ove.armbrust@iese.fraunhofer.de

Dieter Rombach
Fraunhofer IESE

Fraunhofer-Platz 1
67663 Kaiserslautern, Germany

+49 631 6800 1001
dieter.rombach@iese.fraunhofer.de

ABSTRACT
The growing importance of software in ever more technical
systems has led to new demands with respect to developing
software. The demand for more functionality, higher quality, and
faster delivery hence poses major challenges to the software
industry. The software process community has responded with a
variety of different development processes such as the waterfall
model or the incremental commitment model, however, the
number of late or failed projects has not decreased as much as it
was desired. In the new millennium, agile development
approaches promised a new way out of this dilemma. After
several years of heated discussions, it is now time to evaluate
applicability, advantages, and challenges of different software
development approaches based on sound, empirical evidence
instead of anecdotes and hearsay. This paper briefly investigates
the major differences between agile and traditional approaches,
illustrates the difficulties in selecting the “right” approach for a
given project, and proposes hypotheses for empirical evaluation,
in order to build a solid body of knowledge that can be used for
said selection.

Categories and Subject Descriptors

D.2.9 [Management]: Software process models (e.g., CMM, ISO,
PSP)

General Terms
Management, Documentation, Human Factors, Measurement,
Experimentation

Keywords
Software process models, agile, rich

1. INTRODUCTION
The importance of software and its influence on key features of an
enormous variety of products has risen steadily for the past
decades. Hence, more software had to be developed, for more
application domains, providing more functionality, and replacing
more mechanical and hardware parts of systems. This increased
the variety of software quality demands and raised the bar
regarding when such a quality demand is deemed fulfilled.

The software process community has come up with a great variety
of different approaches and technologies to create software that
satisfies these demands. Approaches like the waterfall approach
[1], the spiral model [2], the incremental commitment model [3],
or the Cleanroom approach [4] are well-known and taught in any
software engineering class around the globe.
However, even though the software process community has been
very hard-working to provide all these approaches, there still were
a large number of software projects that did not achieve their
goals. The often-quoted CHAOS report by the Standish Group [5]
indicates that while the number of software projects completed on
time has about doubled from 1994 to 2008, still only about one
third of all projects fall into this category – all other projects were
either late and over budget, or cancelled altogether (Figure 1).

16%

27%

26%

28%

34%

29%

35%

32%

53%

33%

46%

49%

51%

53%

46%

44%

31%

40%

28%

23%

15%

18%

19%

24%

0% 20% 40% 60% 80% 100%

1994

1996

1998

2000

2002

2004

2006

2008

Software projects completed on time
Projects cancelled before completion
Late and over budget

With the emergence of lightweight, agile, highly iterative
approaches for software development, a new viewpoint was added
to the discussion. Maybe ever more elaborate, precise, and
comprehensive development approaches are not the answer to the
challenges, but the opposite? Maybe a development approach that
is reduced to the absolute bare necessities could deliver the
required quality without exploding costs and effort? Approaches
that emerged under the label of “Agile Development” promoted
this idea, for example, the Extreme Programming approach [6] or
Scrum [7].

Copyright is held by the authors.
ICSSP'11, May 21–22, 2011, Waikiki, Honolulu, HI, USA.
ACM 978-1-4503-0580-8/11/05.

Figure 1: CHAOS Report overview

Quickly, the software process community was debating
intensively whether or not agile approaches were the answer we
had been looking for, instead of the classic, heavyweight
processes that were the method of choice so far. Occasionally,
this debate almost resembled religious disputes, with heated
arguments pro and against each approach. What made the
discussion even more difficult was the fact that “agile” did not
describe one single approach, but a whole class of different
approaches, each of them different in many ways. What is
common to all agile approaches, though, are two major features:

1. Highly iterative scheduling. Typical agile development
projects have release cycles from anywhere between
two and 8 weeks. This is radically different from
classic, phased projects, where one phase can easily
take many months, and the first release of the product
may not happen for years.

2. Very little documentation. Agile projects try to avoid as
much documentation as possible. This also radically
differs from classic approaches, which traditionally put
great emphasis on detailed documentation of
requirements, design etc. – naturally, agile approaches
were immediately popular amongst developers, because
they cut away most of the annoying part of developing
software. Ideally, a software product that was produced
in an agile way is documented only through its code and
tests.

Now that agile approaches have existed for a decade, the number
and fierceness of heated debates has decreased significantly.
Agile approaches have established themselves as a viable
alternative to traditional approaches. However, what is still
missing in many cases is reliable information on strengths and
weaknesses of each approach, and clear guidance when to use
which approach. We believe that this discussion should be based
on facts, not on anecdotal stories or hearsay.

2. OBJECTIVE EVIDENCE NEEDED
What are the major reasons for the many of the discussions
around process models, technologies, and tools in the software
engineering community? It’s the inability of the software industry
to deliver products with the desired quality without letting effort
and/or cost getting out of hand. Optimizing each parameter
individually is not the problem – but their combination seems to
be more difficult than anticipated.
So what is the problem? The problem is that during the
development of software, defects are introduced that let the actual
product deviate from its envisioned ideal, i.e., the product that the
customer would like to receive. This is a natural phenomenon and
accepted by most organizations: People make mistakes, and some
of these mistakes introduce defects into the software they are
working on. However, since the customer typically does not like
defects in his software, they must be removed again. From a
purely technical point of view, it does not matter when a defect is
introduced, and when it is removed. However, if cost and effort
play a role, it does: the earlier a defect is found and removed, the
fewer additional defects it may trigger, and the cheaper its
removal usually is.
To illustrate the different approaches’ way of resolving this issue,
let us review two examples. The first example represents the

traditional approaches typically described in “rich” process
models, the second example considers an “agile” process model.
For the first example, let us consider a waterfall development
project split into four major phases (Figure 2):

1. Requirements elicitation
2. Design
3. Coding
4. Testing

At the end of each phase, defect detection activities are
performed. If defects are found, they are removed, i.e., all or a
selection of the phase’s activities are repeated to remove the
defects (solid backlinks in Figure 2). If no more defects are
detected, the project moves on to the next phase. However, it may
also become necessary to go back even further, for example from
the end of the testing phase to the software design (dashed
backlink). This happens if a design defect was not found during
the design or coding phase.

DESIGNREQ TESTCODE

The separation of the project into logically disjoined phases thus
is a means of preventing the spread of defects throughout
development, and eventually of reducing defect detection and
removal cost. This kind of “divide and conquer” strategy is very
well known and applied in software engineering: in this case, the
problem is cut vertically into smaller, manageable units.
For the second example, let us consider a similar development
project, but using an agile approach. Agile approaches also divide
the problem (i.e., the software system to be developed) into
smaller, manageable units. This means that they also use a “divide
and conquer” strategy, but it differs significantly from the
waterfall approach described previously.
An agile approach cuts the problem horizontally, meaning it does
not cut between logical development steps like a traditional
approach, but based on functionality to be delivered. Each phase
(often also called “sprint) within an agile project delivers a subset
of the final product’s functionality, and as part of that phase
performs all the software development activities that are
necessary. In our example, this would be requirements elicitation,
design, coding, and testing. One guiding principle is to only do
what is required to reach the current phase’s goals. This means,
for example, that a design is chosen that just satisfies the current
requirements – and ideally nothing beyond.
If a defect is found within such a phase, it is immediately
corrected, updating all necessary parts of the software product.
The solid arrows in Figure 3 indicate this case. However, all
decisions made within a specific phase influence all later phases –
yet, they are typically made with only the requirements of the
respective phase in mind. The dotted arrow in Figure 3 indicates
this case. This typically leads to frequent design changes

Figure 2: Traditional development approach

throughout development, every time requiring changing all
dependent entities like code and test cases.

REQ
DESIGN
CODE
TEST

REQ
DESIGN
CODE
TEST

REQ
DESIGN
CODE
TEST

REQ
DESIGN
CODE
TEST

So how do the traditional and the agile approach compare? With
respect to divide and conquer, they actually pursue the same
strategy: cut the problem into smaller, manageable pieces, in
order to increase the effectiveness of defect detection and
removal, and in order to limit the effort required for these
activities. If the individual pieces of the problem are still too big,
i.e., too many defects escape into the next phase, they also pursue
the same strategy: Make the pieces smaller. For example,
traditional approaches then divide the design phase into
preliminary and detailed design phases, agile approaches reduce
the functionality that is implemented in one phase.

Development activities

Functionality

…

…

Figure 4 compares the traditional and the agile divide and conquer
approach. When too many defects escape into the next phase (i.e.,
the box is too big), the problem that is addressed within a single
phase is decreased in size (i.e., the box is made smaller). Whether
to cut it vertically or horizontally is less important than to cut it at
all.
If the first major difference between traditional and agile
development approaches is not so major after all, maybe the

second is? So let us take a look at the product documentation that
is produced during development. The traditional approaches
typically produce a very comprehensive documentation: detailed
requirement specifications, design, and test documentation for
example. The agile approaches are clearly different in this
respect: requirements are mostly documented on a very abstract
level in terms of user stories, there is typically no separate design
documentation, and the test cases basically specify what the
software is supposed to do.
However, this self-limitation with respect to documentation is
more or less a conscious decision, and not a compulsory feature
of an agile approach. Put in other words: If we take the iterative
enhancement approach described by Basili and Turner in 1975 [8]
and reduce the amount of documentation demanded, we get very
close to what is nowadays known as “agile development”. Hence,
we believe that there are not two groups of development
approaches (agile and heavyweight), but rather a great variety of
different shades between the two extremes.
One major question remains, however:

3. WHEN TO USE WHICH PROCESS?
This really is the question that made the software development
community discuss (and sometimes fight) during the past decade.
What drove the discussions was the fact that it is rather easy to
find many good arguments for or against any development
process.
Example 1. Let us assume that a project has unclear requirements,
because the customer has some vague idea of the system he would
like to receive in the end, but is not entirely sure. However, he
wants to use the system as quickly as possible, because it will
give him a significant business advantage – others are trying to
build a business on the same idea, and whoever enters the market
first has a head start. This context indicates that a highly iterative,
fast development approach is beneficial. The typical agile process
with close customer involvement, frequent delivery and short
feedback cycles seems much better suited than a traditional
heavyweight approach that first elicits all requirements, then does
the design, coding, etc. – by the time the traditional approach gets
the product on the market, the iterative approach has produced at
least three versions already. So, a clear case for an agile process.
Example 2. Let us assume a second project in a regulated context,
for example, aerospace. In order to be able to sell the software, it
must be certified according to a strict standard. One requirement
of this standard is that the parts of the design covering
functionality related to the well-being of humans (e.g., pressure
control) must be formally verified, i.e., a formal proof must be
supplied that the design is correct. With an agile approach, this
proof would have to be provided after every design change, or
one would run the risk that when the product is finished, the proof
fails, which would mean that the product cannot be introduced
into the market. Hence, this context clearly favors a traditional,
possibly waterfall-style approach, in order to guarantee
certification with reasonable effort.
Examples such as the two described can be provided for pretty
much any development process variant, from extremely agile to
extremely formal. We thus firmly believe that the software
process community should not focus on confirming that some
approach is “better” than the other, but on objective evidence
regarding the different approaches’ suitability for specific

Figure 4: Traditional and agile divide and conquer strategy

Figure 3: Agile development approach

contexts. In fact, we believe it is of paramount importance to
systematically collect, analyze, and use empirical evidence with
respect to the applicability, benefits, and drawbacks of different
development approaches. From our point of view, this is the only
way to steer clear of dreadful “I believe”-style discussion, and to
implement sound engineering practices with respect to software
processes.

4. HYPOTHESES
Many of the discussions with respect to the right choice of
development process are based mostly on anecdotal information.
Some of these anecdotes are (in no particular order, and not
claiming to be exhaustive):

- Agile approaches deliver more elegant designs than
traditional approaches.

- Agile approaches make people more productive
compared to traditional approaches.

- Agile approaches deliver better quality software than
traditional approaches.

- …
For every anecdote, there is usually some kind of study/report that
seems to support the respective claim. However, what is often
missing is conclusive, empirical evidence under which
circumstances, and in combination with which other influencing
factors the reported experience was made. This leads to widely
varying reports. For example, [9] reports that introducing XP into
a large organization was rather difficult, whereas [10] reports the
opposite.
When looking at productivity, a number of studies report that
agile approaches are more productive than traditional approaches
[11] [12] [13], however, [14] reports that traditional approaches
show higher productivity than agile methods. Similar differences
can be found, for example, for employee satisfaction, customer
satisfaction, the ability to incorporate (late) changes in the
product, the interchangeability of team members, produced code
size and quality, the uniformity of work procedures, and other
factors. [15] gives a comprehensive overview.
Because of these contradictory reports, we propose to define a
number of hypotheses that should subsequently be tested with
systematic, empirical studies. Apart from defining the “right”
hypotheses (i.e., those that provide information that is of high
value for research and industry), it is also important to precisely
state the subject of interest. As stated before, “agile” describes a
wide variety of approaches – considering the process
community’s limited resources, is seems prudent to focus on
selected, clearly defined and separated agile approaches.
In our opinion, obvious candidates are Scrum and XP. Scrum is
one of the few lightweight and agile, yet very precisely defined
processes; its application has continuously risen over the past
years. XP is very popular and widely used across all software
developing organizations and should thus not be neglected, either.
However, since XP mostly consists of rather generic principles
and a sketch of an iterative development lifecycle, real-life
implementations of XP also differ widely. This should not be
neglected, because the principles cannot be viewed
independently, but influence and rely on each other [16]. Hence,
the degree to which XP is implemented must be carefully
recorded, in order to allow for analyses and comparisons.

As a starting point to build a solid body of (trusted) knowledge,
we propose a number of hypotheses which should be examined
through empirical studies. Please note that some of these
hypotheses are directed, whereas others are not. This is due to the
fact that for some of the circumstances reflected in the
hypotheses, anecdotal reports seem to point into a specific
direction, whereas for others, this does not seem to be the case.
We propose the following hypotheses for empirical studies:
H1. Agile approaches yield higher employee satisfaction than
traditional approaches.
H2. Agile approaches yield higher customer satisfaction than
traditional approaches.
H3. Agile approaches are more likely to push customers to the
limit than traditional approaches. (Note: There are reports that
customers could not keep up the high level of involvement into
agile projects over a longer period of time.)
H4. Agile approaches can integrate late requirements changes
better than traditional approaches.
H5. Members of agile teams are less interchangeable than
members of traditional teams.
H6. Software architectures/designs created in agile projects are
less consistent than when created in traditional projects.
H7. The work procedures of agile projects are more uniform than
those of traditional projects.
H8. Software architectures/designs created in agile projects differ
in quality from those created in traditional projects.
H9. Productivity in agile projects differs from that in traditional
projects.
H10. The quality of software developed in agile projects differs
from the quality of software created in traditional projects. (Note:
It should be carefully evaluated which quality aspects are
considered.)
H11. The size of the code created in agile projects differs from
that created in traditional projects.
H12. The cost for developing a piece of software in an agile
project is different from that in a traditional project.

5. LEAN VS. RICH PROCESS MODELS
We believe that the documentation of development processes
(“lean” vs. “rich”) is of secondary concern in this context. Again,
there are good reasons to document the required activities in more
or less detail. Certain safety certifications (for example, SILs as
described in IEC 61508 [17]) require the application of very
specific methods in order get the desired certification. In this case,
it would be advisable to document these methods (and possibly
the tools to be used, too) in great detail, in order to provide a clear
guideline what to do.
In other cases, it may be advisable to reduce the amount of
documentation detail. For example, if an organization cooperates
with different customers and directly interfaces with their
requirements management systems, a process documentation
should rather lay out general guidelines on how requirements
should be recorded (e.g., that they must be uniquely identifiable)
than precisely prescribe templates or tools, which would lead to
enormous conversion and synchronization effort.

Hence, we believe that both lean and rich process documentation
have their value, depending on the respective context. The extent
of process documentation should thus also correspond to the
context.

6. PROPOSAL FOR PRINCIPLES AND
VALUES
In line with our strong belief that what is needed in the first place
is strong, empirical evidence of the applicability, advantages, and
challenges of different software development processes, we
propose the following values.

6.1 Proposed Values
- Facts and evidence over belief and intuition. It is of

paramount importance to provide reliable evidence in
order to be able to make sound, fact-based decisions.

- The best-suited process for the respective context over
silver-bullet-illusions. Like in all other engineering
disciplines, there is no one-solution-fits-all answer to
the question of which process to choose. The earlier we
acknowledge this fact, the earlier we can focus our
efforts on determining relationships between contexts
and processes.

- Continuous improvement of processes over static
standards. While standards provide a very valuable
common foundation and vocabulary, we believe that
organizations’ processes should not be static, rarely
changed encyclopedia, but actively monitored, updated,
and improved tools to achieve the organization’s goals.

6.2 Proposed Principles
- We determine the context before we discuss processes.
- We base our decision for a specific process on objective

evidence.
- We make our decision for a specific process transparent

regarding rationales.
- We value feedback regarding the chosen process.

7. ACKNOWLEDGMENTS
This work was in part supported by the German Federal Ministry
of Education and Research (BMBF), grant number 01IS09049B.

8. REFERENCES
[1] Royce, W. W. 1970. Managing the Development of Large

Software Systems. In Proceedings of IEEE WESCON, Los
Angeles, CA, USA, 1-9.

[2] Boehm, B. W. 1986. A Spiral Model of Software
Development and Enhancement. ACM Sigsoft Software
Engineering Notes 11, 4, 22-42.

[3] Boehm, B. W. 2009. The Incremental Commitment Model
(ICM), with Ground Systems Applications. In Ground
Systems Architectures Workshop (GSAW), March 23-26,
2009, Torrance, California, USA.

[4] Mills, H. D., Dyer, M., and Linger, R. C. 1987. Cleanroom
Software Engineering. IEEE Software 4, 5, 19-25.

[5] The Standish Group: Welcome to the Standish Group
International. URL: http://www.standishgroup.com/, last
visited 2011-03-11.

[6] Beck, K., and Andres, C. 2005. Extreme Programming
Explained, Addison Wesley, Boston.

[7] Schwaber, K., and Beedle, M. 2002. Agile Software
Development with Scrum, Prentice Hall, New Jersey.

[8] Basili, V. R., and Turner, A. J. 1975. Iterative enhancement:
A practical technique for software development. IEEE
Transactions on Software Engineering SE-1, 4, 390-396.

[9] Svnesson, H., and Höst, M. 2005. Introducing an agile
process in a software maintenance and evolution
organization. In Proceedings of the Ninth European
Conference on Software Maintenance and Reengineering
(CSMR'05), Manchester, UK, March 21-23, 2005.

[10] Bahli, B., and Zeid, E. 2005. The role of knowledge
creation in adopting extreme programming model: an
empirical study. In Proceedings of the ITI 3rd International
Conference on Information and Communications
Technology: Enabling Technologies for the New Knowledge
Society, April 17-19, 2009, Doha, Qatar.

[11] Dalcher, D., Benediktsson, O., and Thorbergsson, H. 2005.
Development life cycle management: a multiproject
experiment. In Proceedings of the 12 International
Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS'05), April 4-7, 2005,
Greenbelt, MD, USA.

[12] Ilieva, S., Ivanov, P., and Stefanova, E. 2004. Analyses of
an agile methodology implementation. In Proceedings of
the 30th Euromicro Conference, Rennes, France, August
31-September 3, 2004.

[13] Layman, L., Williams, L., and Cunningham, L. 2004.
Exploring extreme programming in context: an industrial
case study. In Proceedings of the Agile Development
Conference, Salt Lake City, UT, USA, June 22-26, 2004.

[14] Wellington, C. B. T., and Girard, C. 2005. Comparison of
student experiences with plan-driven and agile
methodologies. In Proceedings of the 35th ASEE/IEEE
Frontiers in Education Conference, Indianapolis, Indiana,
October 19-22, 2005.

[15] Dyba, T., and Dingsøyr, T. 2008. Empirical studies of agile
software development: A systematic review. Information
and Software Technology 50, 833-859.

[16] MacCormack, A., Kemerer, C. F., Cusumano, M., and
Crandall, B. 2003. Trade-offs between productivity and
quality in selecting software development practices. IEEE
Software 20, 5, 78-85.

[17] International Electrotechnical Commission 2005. IEC
61508, 'Functional safety of electrical/electronic/
programmable electronic safety-related systems', IEC,
Geneva, Switzerland.

