

Using Empirical Knowledge for
Software Process Simulation:

A Practical Example

Ove Armbrust

7. Mai 2003

Fraunhofer IESE
Sauerwiesen 6
67661 Kaiserslautern

Diplomarbeit

Using Empirical Knowledge for

Software Process Simulation:

A Practical Example

Ove Armbrust*

Mai 2003

 Betreuer: Prof. Dr. H. Dieter Rombach†

 Dr. Jürgen Münch‡

* Ove.Armbrust@web.de

† rombach@informatik.uni-kl.de

‡ muench@iese.fhg.de

Erklärung

Hiermit erkläre ich, Ove Armbrust, dass ich die vorliegende Diplomarbeit selbständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kaiserslautern, den 7. Mai 2003

Ove Armbrust

 VII

ABSTRACT

This thesis describes the combination of real experiments with software
process simulation. It introduces different types of real experiments and
simulations and describes three main possibilities of combining them: us-
ing empirical knowledge for simulation, using simulation for real experi-
ments, and online simulations. The first possibility is explored further by
the systematical development and calibration of an executable discrete-
event simulation model of a requirements inspection process. The model
supports an arbitrary number of documents, each inspected by an arbitrary
number of reviewers.

The model was developed systematically by following an existing method
[RNM03]. The following steps were conducted: the creation of a static
process model, the collection and analysis of empirical data, the subse-
quent creation of an influence diagram, and the final creation and calibra-
tion of the dynamic model. The model was calibrated with data from a re-
quirements inspection experiment and two replications.

Furthermore, the thesis explains model limitations and lessons learned, and
gives a detailed description of how to use the model. A first model valida-
tion with real-world data that was not used for the model development
suggests that the model indeed reflects reality decently: The deviation be-
tween simulation results and real-world data averages 3.3 percent. Conclu-
sions on possible further usage of the simulation model and modeling re-
sults complete this work.

Keywords: Experimental software engineering, empirical studies, software process
modeling, software process simulation, software measurement

 IX

Table of Contents

1 Introduction 1
1.1 Motivation...1
1.2 Thesis Goals ..2
1.3 Structure of the Thesis ...3

2 Background 5
2.1 Experimental Software Engineering ...5
2.2 Real Experiments...10

2.2.1 Overview...10
2.2.2 Controlled Experiments – Research in the Small....................13
2.2.3 Case Studies – Research in the Typical14
2.2.4 Surveys – Research in the Large..15
2.2.5 Experiment Sequences...16
2.2.6 Benefits...18

2.3 Virtual Experiments ..18
2.3.1 Overview...18
2.3.2 Simulation in Software Engineering ..21
2.3.3 Continuous Approach (System Dynamics)..............................26
2.3.4 Discrete Approach ..27
2.3.5 Hybrid Approach ...28
2.3.6 Benefits...28

2.4 Software Process Modeling..29

3 Combining Real and Virtual Experiments 35
3.1 Overview ..35
3.2 Using Empirical Knowledge for Simulation...37

3.2.1 Determine Simulation Behavior...37
3.2.2 Enhance Simulation Model ...38
3.2.3 Prepare Simulation Model for Data Integration38
3.2.4 Determine Model Quality ..39
3.2.5 Benefits...39

3.3 Using Simulation for Real Experiments ..40
3.3.1 Scoping of Real Experiments..40
3.3.2 Determine Data Needs ...41

 X

3.3.3 Data Validation/Sensitivity Analysis ..41
3.3.4 Benefits...42

3.4 Online Simulations ...42
3.4.1 Scale-up ...43
3.4.2 Training...44
3.4.3 Benefits...45

3.5 Problems..46
3.6 Summary ...48

4 Simulation Model Development 51
4.1 Overview..51
4.2 Modeling Goals ..52
4.3 Analysis and Creation of the Static Process Model............................52
4.4 Collection and Analysis of Empirical Data..53
4.5 Creation of the Influence Diagram ...55
4.6 The Dynamic Model ...56
4.7 Model Attributes ...57

4.7.1 Document Attributes ...57
4.7.2 Reviewer Attributes...58
4.7.3 Additional Adjustment Variables ...59

4.8 The Simulation Model ..60
4.9 Model Calibration ...63
4.10 Model Extensions...65

4.10.1 Multiple Documents ..66
4.10.2 Multiple Reviewer Groups...67
4.10.3 Miscellaneous Changes..67

4.11 Overview of Used Empirical Knowledge ..68
4.12 Model Limitations ...70
4.13 Lessons learned...70

5 Simulation Run 73
5.1 Scope of Validity of the Model..73
5.2 Simulation Model Preparation ..73
5.3 Simulation Results ...74

6 Validation 77
6.1 Simulation Model Preparation ..77
6.2 Simulation Results ...78

 XI

7 Conclusions 79
7.1 Summary..79
7.2 Further Usage of the Simulation Model ..80
7.3 Outlook...82

List of figures 84

List of tables 85

Bibliography 86

Appendix A: Simulation Run Data 91

Appendix B: Validation Data 93

Appendix C: Terminology 94

 1

1 Introduction

1.1 Motivation

Today's software industry faces various challenges. Systems grow more
complex while at the same time, quality demands rise. Furthermore, devel-
opment time as well as costs should be reduced. To cope with this, new
technologies are constantly being developed. One approach to studying the
discipline of software engineering is the empirical studies approach
[RBS93]. It focuses on finding out about strengths and weaknesses of
techniques, methods and tools. The goal is to provide software develop-
ment projects with a specifically tailored set of techniques, methods and
tools, so that an appropriate result can be achieved. Experimenting is one
way to gather empirical findings.

Experiments, however, are expensive undertakings. Software engineering
is a human-based profession, since all major development steps are per-
formed by humans, using their creativity and knowledge. Thus, experi-
menting in this field naturally comprises numerous humans, which makes
it expensive. Calculations of the costs of a software professional start at
$500 per person per day [BGL+96]. To get statistically significant results,
a high number of experimental subjects is preferred. In addition to the
costs for these subjects, the costs for experimental setup, conduction and
subsequent data analysis must be considered.

The enormous costs of experimentation have been noticed by other sci-
ences years ago. Consequently, simulations were developed to save some
of these costs. This was partially simplified by the fact that some problem
areas do not rely on human performance as heavily as software engineer-
ing. In car manufacturing, for example, many real experiments have at
least been partially replaced by simulations. Thanks to reducing the num-
ber of real experiments and increasing simulation usage, e.g., for parts
strain, the German car manufacturer BMW could reduce the development
time of a new engine from 72 months to about 36 months [Fli02], thus sav-
ing enormous costs.

Simulation is also becoming increasingly popular in the software engineer-
ing community due to the pressure of lowering costs while at the same
time increasing quality and development speed. Using simulation technol-
ogy lowers costs because it reduces the number of real experiments, and at
the same time allows variations of the (virtual) experiment at almost no
additional cost. Simulations can be used for technology evaluation, deci-
sion making in project management, as well as controlling and training,

1 Introduction

 2

among other fields. Hence, simulation might become an important factor in
the future of software engineering.

One of the key problems of simulation is to create accurate models reflect-
ing real world behavior for specific contexts. Correctly mapping the real
world to the model, executing the simulation, and mapping the results back
to the real world is crucial to the success of the modeling and simulation
effort. Integrating empirical knowledge into simulation is an important ap-
proach to achieve this goal, because it allows for the creation of a better
image of the real world and a closer connection of real and virtual world.
Nevertheless, many existing simulation models are purely based on hypo-
thetic assumptions that have not been proven in real practice.

This thesis presents an example for the development of a simulation model
by using empirical knowledge, and describes the experience with the mod-
eling process. The goal is to demonstrate how empirical knowledge can be
effectively used for simulation modeling, and to highlight typical chal-
lenges, difficulties, and limitations. The simulation model created here is
fully operational, and can be adapted easily to different contexts. A practi-
cal example is included.

1.2 Thesis Goals

This thesis pursues several goals:

1. It wants to give an introduction on empirical software engineering.
Different types of real and virtual experiments are introduced and
structured.

2. It will point out the main possibilities of combining empirical stud-
ies and software process modeling and simulation. This emphasizes
on the diversity of the combination possibilities.

3. An exemplary model is developed for the case of using empirical
knowledge for simulations. This includes all modeling steps such
as deriving necessary data from real world data sources, determin-
ing influences, and creating and calibrating the model, with the
purpose of pointing out typical problems and possible solutions.

4. Based on a methodology developed by Rus et al. [RNM03], a sys-
tematic guide to support the usage of empirical knowledge for
software process modeling will be given. This should simplify cre-
ating other models.

5. Remaining open questions are described to point out possible fields
of future work.

1.3 Structure of the Thesis

 3

1.3 Structure of the Thesis

Chapter 2 describes the basic ideas of experimental software engineering,
real and virtual experiments, and their relations. The basic ideas of ex-
perimental software engineering are described in Section 2.1. The most
commonly used types of real experiments are introduced in Section 2.2. It
is obvious that these experiments are expensive in real life, so new ways to
reduce costs are currently being researched. One of them are simulations or
virtual experiments as described in Section 2.3. Section 2.4 gives an
introduction on the area of software process modeling.

Chapter 3 introduces the combination of real and virtual experiments. Sec-
tion 3.1 gives an overview over this subject. Three basic variations can be
distinguished: using empirical knowledge for simulation purposes as de-
scribed in Section 3.2, using simulation for real experiments (Section 3.3),
and online simulations (Section 3.4). Section 3.5 articulates typical prob-
lems.

Chapter 4 describes the simulation model development. This was done ac-
cording to the methodology by Rus et al. [RNM03]. The steps taken to-
wards the model are described in Sections 4.2 to 4.6. The model itself,
model calibration and some extensions towards a more practically usable
model are explained in Sections 4.7 to 4.10. Section 4.11 gives an over-
view of used empirical knowledge. Model limitations and lessons learned
are presented in Sections 4.12 and 4.13.

Chapter 5 describes an exemplary simulation run with data from the real
experiments, which illustrates the model. The scope of validity of the
model, preparation steps and simulation results are explained in detail.
Chapter 6 validates the model with data from another real-world experi-
ment. Chapter 7 summarizes the findings, describes usage possibilities of
the simulation results, and gives an outlook on future work.

 5

2 Background

2.1 Experimental Software Engineering

The first software systems were mostly developed by hardware experts.
This was the case because in the beginning of the software era, most soft-
ware was hidden inside hardware, and fulfilled its duty there as primitive
firmware or similar. The first software controlled industrial machines, for
example sustaining a constant pressure in a reaction chamber or the like.
Only very simple tasks were solved by software, consequentially software
was not complex, but consisted only of a very limited number of LOC1.
Ensuring the correctness and reliability of this code was relatively easy and
was done by the corresponding hardware engineer.

Another application domain of software was solving mathematical prob-
lems. Algorithms were translated into executable programs, which in turn
solved equations or the like. Proving the correctness of this code was also
possible, since in most cases, a mathematician translated an algorithm into
computer lingua. Well-known mathematical methods could be used for
verification purposes.

As hardware systems grew more complicated, software also became more
complex. Teams of several people were involved in software development,
introducing more defects into the system. Soon, the software became the
critical part of the system. Today, even a toaster contains several thousand
LOC to get the toast exactly the right amount of heat. At the other end of
the scale, software is controlling large parts of everyday life. Many of the
amenities are only made possible by software, for example air condition-
ing, entertainment (TVs, radios, video games, shows), the ability to pick
up the telephone receiver and call anyone anywhere on the globe, and
other areas. Software also controls critical systems like air traffic control or
military weapon systems. Demands for correctness and reliability are much
higher here, since (software) failures can have extreme consequences.

In 1968, the software crisis was officially stated for the first time at the
NATO conference in Garmisch-Partenkirchen. New ways other than the
unsystematic development process used at that time had to be found, espe-
cially in the field of defect detection and prevention: Software engineering
was born.

The new engineering approach proposed a very systematic way of devel-
oping software. Traditional engineering disciplines like construction or

1 LOC = Lines of code

2 Background

 6

mechanical engineering demonstrated both the need for and the benefits of
a systematic process, especially when larger projects were to be completed
successfully: When building a hut in the back yard, no architect is needed
for a decent result. When building a skyscraper, starting without specialists
for materials, static and construction will inevitably result in a complete
failure. The same is true for software projects. Writing a simple program,
e.g., for the calculation of Fibonacci numbers, can be done by a single per-
son rather quickly. When it comes to software for bank account manage-
ment, specialists are needed, because failure is not an option, and the sub-
ject is a very complex one. The (in other areas) well-known engineering
principles help immensely in achieving the time, quality and cost goals
[Som87].

Since 1968, many efforts have been made in the field of software engineer-
ing. They all have in common the main goal: To develop software in a
controlled manner so that quality, costs and time needed can be forecasted
with high precision. Other goals include the overall reduction of develop-
ment time and costs and a general increase in product quality. As of today,
not one single best approach can be identified to achieve these goals. Fol-
lowing Rombach et al. [RBS93], three different approaches to study the
discipline of software engineering can be identified:

− the mathematical or formal methods approach,
− the system building approach,
− and the empirical studies approach.

While the mathematical or formal methods approach aims at finding better
formal methods and languages, and understands software development as a
mathematical transformation process, the system building approach con-
centrates on finding better methods for structuring large systems. Here,
software development is understood as a creative process, which is con-
trolled through constraints on the resulting products. The empirical studies
approach focuses on finding out about strengths and weaknesses of tech-
niques, methods and tools. The goal is to provide every software develop-
ment project with a specifically tailored set of techniques, methods and
tools, so an appropriate result can be achieved. Experimenting is one way
to gather empirical data.

Regarding the empirical approach, the word “empirical” requires special
attention. Derived from the Greek “empeirikós“ (from “émpeiros“ = ex-
perienced, skilful), it means “drawn from experience”. This suggests that
data from the real world is analyzed in order to understand the connections
and interactions expressed in the measured data. This is an important point
about the empirical approach: The data must be measured somehow.
Measuring empirical data is not trivial, on the contrary: Many wrong deci-
sions are based on incorrectly measured or interpreted data.

2.1 Experimental Software Engineering

 7

A good example is the infamous Lufthansa accident at the Warsaw airport
in 1993. An Airbus A320 did not stop after landing, but raced over the end
of the runway and collided with an earth bank, resulting in two dead peo-
ple and a destroyed airplane: The flight computer refused to activate any
brake system (air brakes, thrust reverse, wheel brakes) for nine seconds af-
ter touchdown. The primary reason for this was the incorrectly registered
plane status. By measuring the revolutions of the wheels, the flight com-
puter determined whether the plane was flying in the air or not. While be-
ing in the air, brakes (including thrust reverse!) can obviously not be acti-
vated. When the plane landed in Warsaw, there was heavy rain, resulting
in a water film sitting on the runway. An effect known as “aquaplaning”
prevented the wheels from spinning. Consequentially, the flight computer
refused to activate the brake systems, which led to the catastrophe [Lad94].

What had happened? The software developers believed that by measuring
whether the wheels spin or not, they could find out whether the plane does
already have contact to the runway, so brake systems can be activated. Ac-
tually, they only measured whether the wheels were spinning or not. The
assumed connection “wheels spinning ↔ plane on ground” was not cor-
rect. This makes clear that although measuring may be easy sometimes, in-
terpreting the measured data may be significantly harder. Of course, meas-
urement itself may also be hard: How can “usability” or “user friendliness”
be measured?

The aim of the empirical approach consists of two parts: Measuring the
real world correctly (with correct interpretation of the data measured) and
coming to the right conclusions from the data measured. This concerns se-
lection and usage of techniques, tools and methods for software develop-
ment as well as activities like resource allocation, staffing and time plan-
ning.

At this point, the experimental part gets involved. In order to improve
software development performance, experimenting with changes to the
current situation needs to be done. Generally, this is achieved by determin-
ing the current situation, then changing some parameters and evaluating
the results. The problem often is the context, which is hard to record and
different with every project. Therefore, evaluating a new technique over
several projects is difficult due to the different contexts. Another point is
that one approach may work differently in different contexts, so whatever
is proven by one experiment must not necessarily be true for other contexts
[Jos88].

Experimenting, however, is a rather expensive way of gathering knowl-
edge about a certain technique or tool. The cost can be divided into two
main parts. First, the experiment itself must be conducted, that is, the ex-
perimental setup must be determined, the experiment needs to be prepared
and carried out, the data must be analyzed and the results evaluated. These
are the obvious costs, which can be measured easily.

2 Background

 8

The second part consists of the risk of delaying the delivery of the product.
If a new technique is tested in a formal experiment before it is used in pro-
duction, this ensures that no immature or unsuitable technique is used in
real life. On the other hand, since software development is human-based,
human subjects are needed for the experiment. During the experiment, they
cannot carry out their normal tasks, which may result in delays, especially
in time-critical projects. Competitors not carrying out experiments may be
able to deliver earlier. These costs are not easily to be calculated. Still, us-
ing immature or unsuitable techniques is more expensive in most cases in
terms of product quality, delivery time and person hours.

In other engineering sciences, these costs have been known for quite some
time, and companies naturally wanted to minimize them. One approach is
simulation. The engine development time at BMW, for example, has been
reduced from 72 months to about 36 months [Fli02]. Engineers used to
build five prototypes of a car engine before mass production started. Under
the pressure of reducing costs, this has been reduced to two prototypes,
where the second one is merely a proof that the concepts work. This could
only be achieved by making extensive use of simulation. Most of the char-
acteristics of a modern car engine are calculated and simulated on software
systems and then only verified by the prototype.

A major difference between traditional engineering sciences and software
engineering is that in software engineering, there is no production. After a
car engine is developed, it is built several hundred thousand times, always
the exact same way. Therefore, simulations were introduced in this area
first. Production processes were simulated first, later development proc-
esses followed.

The software industry is under the same pressure right now as the produc-
ing industry has been 20 years ago. Customers demand higher-quality sys-
tems in less time for less money. Instead of time-consuming experiments,
simulation can be used as in other engineering sciences. Using simulation,
possible changes to the development process or utilized tools may be
evaluated with comparatively low costs and without any risk for the cur-
rent product. The results of the simulation need to be evaluated analog to
the engine construction example, of course. Still, savings in time and costs
are significant.

When looking at experimentation at a larger scale, other goals appear.
Humanity has been experimenting ever since: interbreeding plants or ani-
mals, developing new technologies, or cooking new meals. All this can be
seen as experiments. In the end, humankind learned from it. Today, no-
body asks how much money the first Diesel engine meant for its inventor.
It is just still being used, in a very refined form, and still being improved.
The experiments of Rudolf Diesel led to a new type of engine. Over time,
many engineers altered many things and observed the results, they learned
from their experiments with the engine.

2.1 Experimental Software Engineering

 9

The important point is: Whichever experiment is conducted, people should
learn something from it. This learning should be organized in some form,
to enable efficient learning and to prevent that findings get lost over time
and have to be re-discovered. One such approach specifically for software
engineering is the Quality Improvement Paradigm (QIP) [BW84] devel-
oped in the 1980s by Victor Basili and Dieter Rombach at NASA SEL2.
One QIP circle consists of six steps: Characterize the project (i.e., describe
the context), set goals which should be achieved, choose models for meas-
urement, execute the project, then analyze the data acquired, and finally
package the information gathered during the analysis step, e.g., in the form
of lessons learned, new/altered models or processes.

One learning scenario based on QIP is the following: First, the problem(s)
must be identified. The actual state is measured and then an experiment is
conducted with some parameters altered to identify where to change about
the process. Once this is clear, the process is altered and again the actual
state is measured. The experience learned from the experiment and the al-
tered process is stored, and the (new) process is examined for further prob-
lems, thus starting a new cycle.

The storage of information gained in the execution phase is important: In-
formation that cannot be retrieved and used is not worth anything. There-
fore, a storage solution must be found which allows easy storing and find-
ing of information. One such approach is the Experience Factory (EF)
[BCR94a]. While QIP describes a methodological model for advanced
learning in software organizations, EF provides an organizational model
for the storage of knowledge. It consists mainly of one experience database
and many project databases. The experience database contains process
models, product models, project plans and other packaged information.
These are gained from various projects, and stored with their context. Each
project database contains “raw” products and measurement data. After pro-
ject completion, this knowledge is analyzed, packaged and added to the
experience database.

To use the knowledge earned in former projects, the experience database
can be queried during project setup. It provides appropriate models,
cost/time/staff estimates and so on, which can be used for project planning.
When the project is running, new measurement data is acquired and stored
in the project database. In the end, this contributes to the knowledge al-
ready in the experience database. So every single project can be seen as an
experiment and an opportunity to learn.

Of course, a lot of research is also being done at universities or research
institutes. New technologies are developed, examined and refined. There
is, however, a significant gap between state-of-the-art as in universities and

2 Software Engineering Lab

2 Background

 10

state-of-the-practice in companies. This is partially so because companies
refrain from using new and (in a productive environment) untested tech-
nologies, but there is also a lack of communication. Research in universi-
ties is often very academic with no immediate goal of practical application.
Companies, however, prefer specific help with certain problems. This gap
is not easy to cross. The Fraunhofer Gesellschaft tries to build a bridge be-
tween academic research and industrial needs.

This thesis focuses on the use of simulation in software development proc-
esses, the combination with empirical studies performed in the real world,
and demonstrates essential benefits of such a combination using an exam-
ple.

2.2 Real Experiments

2.2.1 Overview

One of the key elements of empirical software engineering is the proposal
of new models, e.g., for costs or product quality. For example, implement-
ing a new reading technique in the software development process will most
probably influence the time needed for defect detection and possibly cor-
rection, as well as the costs for these activities. To reflect this in an appro-
priate model, three possible ways to come to a new model can be distin-
guished. Either an existing model can be adapted, or a new model is intro-
duced based on theoretical consideration, or a new model may be derived
from observation. There are also combinations of two or all three ways.

When a new model is introduced, adequate measures must be formulated,
so that the behavior of the model (compared to reality) can be evaluated. In
the example, this would typically be efficiency (e.g., the number of defects
found per hour) and effectiveness (e.g., the total number of defects found).
In a first approach, this measurement is done mostly through experiments.

The question is usually whether the model corresponds to reality, and if
not, how and at which points to adapt it. This can be done with experi-
ments. They are called “real” experiments (as opposed to “virtual”) be-
cause they feature real people spending real time for solving (possibly con-
structed) problems in a real-world environment. This costs time and
money, because the people taking part in the experiment cannot do their
normal work. This makes clear one characteristic feature of software engi-
neering: Human involvement. Unlike other sciences like chemistry or
physics, software engineering experiments heavily involve humans, and
are in turn heavily influenced by human behavior. The psychological as-
pect is similarly important in software engineering as in typical social sci-
ences like anthropology, political science, psychology and sociology.

2.2 Real Experiments

 11

The purpose of an experiment is usually the proof of a hypothesis. A hy-
pothesis is a supposed connection between a number of (controlled) input
variables and a certain result. The experiment should either prove the cor-
rectness of the hypothesis or show that it is wrong. A null hypothesis sym-
bolizes the opposite state to that suggested in a hypothesis, postulated in
the hope of rejecting its form and therefore proving the hypothesis. For ex-
ample, if the hypothesis states “Reading technique A is more efficient than
reading technique B”, then the null hypothesis would be “Reading tech-
nique B is more efficient or equal to reading technique A”.

One commonly used classification distinguishes the number of experimen-
tal treatments and teams [RBS93]. Table 2.1 gives an overview over the
possible combinations.

number of teams per treatment number of treatments
 1 m
1 1:1 (Case study) 1:m

n n:1 (Replicated
experiment)

n:m (Lab
experiment)

Table 2.1: Classification by number of treatments and teams

A 1:1 situation does not provide reliable information for comparisons. The
results may completely depend on the team members that were assigned to
the experiment (experimental subjects), or on the task the team was sup-
posed to deal with (experimental object). There is no way to know how
much each of the two extremes influenced the result.

For example, if a team performs very badly in a defect detection experi-
ment, this may be because team competence in this specific area is low, or
because the reading technique used was not appropriate, or a combination
of both. Without further information, there is no way to tell. 1:1 settings
may be used as a proof of concept, though, or to check in which areas cur-
rent processes may be improved. Case studies usually are conducted as a
1:1 experiment type.

A 1:m situation already enables the experimenter to have one team solve
several problems. This enables him to evaluate whether team performance
is caused by a certain method (the team performs poorly using one method,
but well using another) or by the team itself (the team performs poorly us-
ing any method). Still, the methods may all be bad, thus making the team
perform badly although it is not a bad team per se. Additionally, it is diffi-
cult to exclude learning effects throughout the treatments.

Using more than one team makes experiments more expensive. Having n
teams replicate a single experiment (n:1 setting) enables the experimenter
to assess team performance as well as an average for the method examined

2 Background

 12

in the treatment. Still, this does not allow for comparing different ap-
proaches. This approach is often chosen to prove the validity of findings or
to examine the benefits of a new method or technique in greater detail. The
experiment is set up and conducted by one team, and the replicated by
other teams to validate the results.

The only approach for comparing different solutions for a problem in one
experiment is the laboratory experiment. Using a n:m setting, several
teams perform several tasks. This provides information about how the
methods compare (relatively) and how the respective team influenced the
results. Unfortunately, this type of experiment is the most expensive one.

A n:m setting requires an amount of control that can only be reached in
laboratory environments. Conducting a n:m experiment in an industrial
setting would increase project costs extremely, so most controlled experi-
ments can be found in facilities like universities or research institutes. Be-
cause of the high costs and the number of variables monitored, controlled
experiments are mostly focused very narrowly. Table 2.2 gives an over-
view over the real experiments described in this chapter and some of their
characteristic factors.

Three of the most commonly used experiment types will be introduced in
short: controlled experiments, case studies and surveys. Controlled ex-
periments and case studies may be used to verify a newly introduced
model very well, whereas surveys usually help in determining the current
state-of-practice and major causes of undesired effects [Rom01].

The three experiment types differ in the types of variables that are consid-
ered. An overview is given in Figure 2.1. Dependent variables are influ-
enced by independent variables and therefore not considered separately.
There are two types of independent variables: controlled ones and not con-
trolled ones. Typically, the experimenter aims at lowering the number of
controlled variables to save effort, and to choose the “right” ones for the
respective context. The not controlled variables are to be kept as constant
as possible, and also as representative for the respective context as possi-
ble. This prevents uneven influence on the experiment and describes the
context well.

Factor Survey Case study Experiment

Execution control None Low High

Investigation cost Low Medium High

Ease of replication High Low High
Table 2.2: Characteristic factors for real experiments after [WSH+00]

2.2 Real Experiments

 13

Variables

IndependentDependent

Not controlledControlled

Variables

IndependentDependent

Not controlledControlled

Figure 2.1: Variable types in experiments

2.2.2 Controlled Experiments – Research in the Small

A controlled experiment aims at completely controlling the experimental
environment. In the field of software engineering, this includes the number
and expertise of the test persons, the tasks they are given, but also vari-
ables like at which time of the day the experiments takes place, or room
temperatures. Because of this high level of control, controlled experiments
are also called laboratory experiments. The tasks examined in the experi-
ment vary from real problems from earlier software projects to completely
imagined situations.

If a new defect detection method were checked for efficiency, for example,
it would be a good idea to use real documents from an older project. By
doing so, two benefits can be achieved: First, an average real world prob-
lem is present. This ensures that the results are not only some academic in-
sights, but do help with everyday work. Second, comparing the new
method against the currently used one is easy. The number and severity of
errors remaining in the documents after defect detection with the new
method may be weighed against the time consumed, and so the method
may be compared against the “traditional” one. This of course only works
if the test persons do not know the test data because they were part of the
project, because otherwise, they might not really detect the defects, but
remember them.

If test subject knowledge or project confidentiality denies the usage of real
data as experimental material, then artificial data must be used. This could

2 Background

 14

be specially created documents or a complete training system, which is de-
veloped and maintained exclusively for experimentation purposes. Still,
help with a problem that really exists is the purpose of the experiment, so
there should at least be some relation to actual development, to ensure that
the results are not purely academic.

Made-up problems may also be used for comparing several new methods.
Here, the problem may be specially tailored to the methods, focusing on
areas with special interest. In our example, if project experience has shown
a great density of interface problems, documents with a complex interface
structure could be artificially created to test the new methods very inten-
sively in this area. Creating a new scenario which has never happened be-
fore, but could happen someday and possibly have very severe conse-
quences could be a third area where to use this kind of experiment.

Conducting a controlled experiment, however, requires significant
amounts of both time and money. In most cases, a n:m setting as described
in Section 2.2 is used. Due to this costly approach and the amount and
complexity of the data acquired, only small portions of the software devel-
opment process are analyzed this way. Examples might be probing differ-
ent reading techniques in a defect detection process or different program-
ming languages for solving specific problems.

2.2.3 Case Studies – Research in the Typical

A case study does not try to control all variables, but still aims at identify-
ing the significant ones before the project starts. Once this is done, their
status is recorded and monitored throughout the study, in order to identify
their influence on the results. This makes case studies suitable for indus-
trial use, because projects are only influenced on a minor scale: The num-
ber of values measured and project documentation (other than product
documentation) may increase slightly, but this is only a minor “add-on”
and does not require enormous amounts of extra time and money.

Most commonly recorded variables are inputs, constraints and resources
(technical and human). Most of the time, a single actual software project is
examined. Usually, only one team per task is scheduled, so the 1:1 setting
is typical for a case study. The same applies for the experiment data classi-
fication: Only real-life data can be used.

The case study approach can be found far more often in industry than the
controlled experiment. This is because case studies can be conducted ac-
companying the real project without enormous extra expenses. A sensible
approach for process changes would be to alter a little part of the develop-
ment process, small enough to prevent great problems for the overall proc-
ess, but big enough to notice possible time and money savings, and then
conduct a case study for a project with the new process. There is still the

2.2 Real Experiments

 15

danger of confusing team influence and process influence, but in software
organizations, it is possible to estimate team performance from other pro-
jects, thus extracting process influence fairly accurate.

Because case studies do only pay special attention to factors typical for the
current situation, instead of controlling the complete environment, they are
quite popular. Plenty of knowledge about project progression may be
achieved at relatively low costs in a realistic setting.

2.2.4 Surveys – Research in the Large

In contrast to case studies where monitored variables are defined before
the project starts, surveys are retrospective studies: The occurrence that is
to be examined has already taken place [WSH+00]. This means that typi-
cally the survey is planned and conducted after the project is finished. The
focus of surveys lies on larger-scale relations and not so much on details.
The experimenter tries to collect as much data as he can find, evaluate it
and determine connections between the discovered factors and the results.
An analogy would be an assessment in a company: There is no influence
of the survey on the project and the data available. The experimenter can
only use whatever data were recorded throughout the project. Examples for
surveys can be found in [Lur02] and [Mey02].

This makes clear one great danger of surveys: If a survey states (from
comparisons of past projects) that a certain factor combination has a sig-
nificant effect on the project outcome, this may be an incorrect assump-
tion. The observed effect may not be caused by the formulated factor com-
bination, but by another reason that was not discovered because it was not
recorded during the project.

Of course, this danger does not only exist in surveys, but also in laboratory
experiments and case studies, where the researcher has the possibility to
set the monitored variables. The difference is that in laboratory experi-
ments and case studies, he can use his experience to minimize the risks of
mistakes such as not measuring important variables. A normal project usu-
ally is not explicitly set up to later support a survey, but to achieve the de-
sired goals at minimum costs. Hence, the risk that important variable data
are missing is greater in surveys than in laboratory experiments and case
studies.

The results of a survey are usually not as detailed and “hard” as results
from a case study or a controlled experiment. If a significant cause for a
certain undesired effect was (supposedly) detected, a more thorough inves-
tigation may be undertaken to refine the findings. This may be done in
form of a case study or a formal experiment, depending on the situation. A
case study may be conducted if a strong indication exists that a certain fac-
tor influences the result significantly, and there is a proposal to improve

2 Background

 16

that factor with only a limited risk of failure. If there are several improve-
ment proposals, or if it is not even sure which factor(s) are to be altered, a
formal experiment may help reducing the risk for everyday business, at
higher experimentation costs.

2.2.5 Experiment Sequences

One of the biggest problems with experiments is comparing and evaluating
the results. This is easy to understand when looking at surveys or case
studies, because here, the context can only be described, not changed.
Nevertheless, why is this also difficult with controlled experiments?
Wasn’t one of their advantages the complete control of all variables, in-
cluding the context?

Controlling all variables makes the results very valid – in the respective
context. Example: Fagan argues that most defects would be detected dur-
ing team meetings [Fag76], whereas McCarthy et al. [MPSV96] and Votta
[Vot93] come to the contrary result. The context is very different in all
three cases. So which study is “correct” and which one not? This question
cannot be answered, because in their respective contexts, all three are cor-
rect.

Recording the context with every study is very important to evaluate the
outcome. However, to come to a more comprehensive view of the software
development process, all the different studies must be combined somehow.
Their “essence” must be extracted and combined somehow. This can be
done by regarding all experiments in one area (requirements specification,
defect detection,…) as a sequence of experiments. Common variables and
phenomena may then be detected and included in the global model.

Experiment sequences may be planned or unplanned. A planned experi-
ment sequence usually consists of a number of teams conducting a number
of experiments. An unplanned sequence collects experimental data from
many experiments and extracts commonalities and differences. In most
cases, the majority of the teams will take part only in one experiment, and
the experiments usually examine similar phenomena.

An example for an unplanned experiment sequence can be found in
[Arm02]. Here, the author examined a large number of experiments (sur-
veys, case studies and laboratory experiments) and extracted factors that
influence the progression and results of software inspections. The factors
form a complex network of interrelations. Only very few factors were
found in every experiment that was reviewed. The combination of the ex-
periments showed new correlations that would not have been obvious
when regarding every experiment individually.

2.2 Real Experiments

 17

The question of the context, however, is still not answered satisfactory.
How can factors be included that significantly influence the process only
sometimes? Here, for example a model of the software development proc-
ess would need to be tailored to the specific situation. Context information
is mandatory and must be individually determined for each situation. De-
pending on the context, some factors may be left out at some point, while
others are added. More research is needed here to determine when to in-
clude what.

A planned experiment sequence, on the other hand, might consist of sev-
eral teams carrying out several tasks. For the purpose of evaluating a word
processor, these tasks might be writing a 50-page thesis with few figures,
writing a 5-page report with lots of formulae, and writing a 1-page applica-
tion for a scholarship. One possible experimental setup is depicted in Table
2.3. By shuffling teams and tasks, both team performance and tool capabil-
ity can be evaluated.

Unplanned experiment sequences may be used when findings from iso-
lated experiments are to be generalized and supported by a broader founda-
tion. Analyzing many experiments concerning similar phenomena can lead
to new conclusions and explanations, rather than a single experiment. In
addition, case studies and surveys are often too hard to coordinate with
each other to form a planned experiment sequence.

Planned experiment sequences may be used to break up tasks too complex
to be investigated in a single n:m laboratory approach. By conducting an
experiment sequence, the researcher may examine a complex phenomenon
over several years while not losing his focus.

Task
Team

Thesis Report Application

1 X X

2 X X

3 X X
Table 2.3: Exemplary setup for a planned experiment sequence

2 Background

 18

2.2.6 Benefits

Following Basili et al. [BSH86], benefits in the following areas can be ex-
pected from experiments in software engineering:

- Basis. Experiments provide a basis for the needed advancement in
knowledge and understanding. Through experiments, the nature of the
software development process can be assessed and evaluated.

- Process and product effects. Experiments help to evaluate, predict, un-
derstand, control and improve both software development process and
product.

- Model and hypothesis development and refinement. In iterations, mod-
els are built and hypotheses about the models postulated. These hy-
potheses can be tested by experiments and then be refined, or new
models can be constructed.

- Systematic learning. In a rather young profession such as software en-
gineering, where there is still very much to learn, it is important to fol-
low a systematic approach, rather than intuition.

2.3 Virtual Experiments

2.3.1 Overview

To overcome the limitations and problems with real experiments, many
professions turned to virtual experiments. While in the 1960s or 70s, nu-
clear weapon tests were a rather usual phenomenon, this has ceased (al-
most) completely in the new millennium. In part, this reduction has been
caused by the increased knowledge about the harmful side effects of nu-
clear weapons (namely radiation and contamination of vast areas for thou-
sands of years), but not completely. For more information about human ra-
diation experiments, please refer to [oE94].

Since the military has priorities other than preventing ecological damage,
but wide parts of human society was not willing to accept that, other ways
for testing these weapons had to be found. Today, (at least some rich west-
ern) nations have the ability to simulate nuclear explosions. This saves
enormous expenses, because real testing is always destructive and nuclear
weapons are not exactly cheap. In addition, simulations are not getting so-
ciety upset. Another great advantage is that simulations can be repeated as
often as wished with any set of parameters, which is impossible with real
tests.

2.3 Virtual Experiments

 19

Other areas where simulation is used amply are mechanical engineering or
construction. Here, simulation helps saving cost and time. As a rather
young profession, software engineering has only recently started to dis-
cover and use the benefits of simulation. Empirical software engineering
yet is not very common in industry. Many decisions are still based on in-
tuition rather than measured data. This trial-and-error approach is very ex-
pensive and delivers lower-quality products than more systematic ap-
proaches would do. When implemented, experiments already yield good
results, for example in choosing a reading technique for inspections.

Still, the required experiments cost a lot of money, which companies natu-
rally dislike, despite the benefits. But as in other professions, simulation or
virtual experimentation can also help with that in software engineering. A
virtual experiment is conducted in two basic parts: modeling the real-world
situation, and afterwards simulating it on a computer. The model tries to
reproduce some aspects of the real world as accurately as needed, in a rep-
resentation that can be used in the simulation. The optimal model would
contain exactly the entities and relations needed for the simulation, nothing
more and nothing less.

An entity represents an element of the real world, e.g., a person or a docu-
ment. Like their real counterparts, entities interact with each other; this is
mapped to relations in the model. One problem in modeling is that it is
usually not clear which entities and relations of the real world need to be
modeled. This depends on the scope of the model: If the goal is the predic-
tion of product quality, other factors must be included than when cost op-
timization is aimed at. In any case, including too many factors increases
model complexity unnecessarily and may even influence results, whereas
considering too few factors may render the results unreliable.

Working with simulations can be seen as research in a virtual lab (Figure
2.2). The conventional software engineering laboratories explore the re-
search object by using various empirical studies, e.g., controlled experi-
ments or case studies. The virtual laboratory examines its research object
with simulations. Transferring information from one to the other can help
improve either research results, as shown in Chapter 3.

2 Background

 20

Empirical StudiesEmpirical StudiesSimulationEmpirical StudiesEmpirical StudiesSimulationEmpirical StudiesEmpirical StudiesEmpirical StudiesEmpirical StudiesEmpirical StudiesEmpirical Studies

Model of
Research

Object

Model of
Research

Object

Research
Object

Research
Object

Figure 2.2: Real and virtual laboratory approach based on [Hag03]

Simulations come in two main variations: discrete and continuous. In dis-
crete event simulations, variables can change their value only at discrete
moments of time, as opposed to continuous simulations, where their values
change continuously with time. A hybrid approach tries to combine the
two, to overcome the specific disadvantages. Any simulation helps de-
creasing experiment costs by reducing the amount of people needed to
conduct the experiment and by speeding up the process faster than real-
time.

Simulation supports any of the three types of experiment regarded earlier,
each in a different way. Once the simulation model has been built and veri-
fied, laboratory experiments can at least partially be replaced, for example
to determine the consequences of (gentle) context changes. Case studies
focus on monitoring real-life variables, so completely replacing them by
simulations would not make sense. Simulations may still be useful for
identifying variables that should be monitored. A simulation of an altered
process can reveal variables that are likely to change significantly, so the
case study can pay special attention to them. Regarding the other direction
of information flow, case studies can deliver valuable data for calibrating
the simulation model. The authentic nature of the data (they are taken di-
rectly from a real project) also helps refining the model.

Simulation does not seem very useful replacing surveys, since surveys are
optimized for finding relations in real-life processes. Replacing surveys of
real processes with surveys of modeled processes would not save time or
money. Actually, surveys can supply information for simulation models,
like case studies: In the retrospective, problems often become obvious that
were invisible during the project. A survey reveals them in many cases.

Let’s say that a certain product was delivered significantly later than
planned, and that this phenomenon did not occur for the first time. A sur-

2.3 Virtual Experiments

 21

vey reveals that the customer changed the initial specifications of the soft-
ware several times in cooperation with customer service. However, it took
customer service several weeks to communicate these changes to the de-
velopment team, thus already delaying the necessary rework and, in addi-
tion, making it more complex by forcing the developers to change a more
mature piece of software.

The survey reveals this lack of communication within the software devel-
opment process, and modeling that part of the process could help under-
standing and solving the problem. Once the model has been built, the data
from the survey can be used to calibrate it. Process changes can then be
simulated before realizing them in the actual process. This indicates that
surveys and simulation should be used complementary, not alternatively.

2.3.2 Simulation in Software Engineering

Simulation is increasingly being used in software development processes.
After ignoring it for a long time, software engineers are beginning to real-
ize the benefits of simulation. These benefits may be found in the areas of
strategic management of software development, operational process im-
provement or training situations [KMR99]. According to the respective
purpose, the simulation focus ranges from lifecycle modeling (for long-
term strategic simulation) to small parts of development, for example a
code inspection (for training purposes).

Due to the ever-increasing demands to software (better, faster, cheaper),
software development has changed a lot during the past 20 years. Small
programs written by single persons have evolved into gigantic “code mon-
sters” developed and maintained by hundreds or thousands of people. In
addition, software fulfils more functions every day, thus increasing com-
plexity even more. To cope with this, new techniques, methods and tools
are being developed constantly. New programming paradigms and lan-
guages are introduced to improve the quality of software development and
the resulting products.

There is, however, no silver bullet for software development. Each tool or
programming paradigm has its own benefits and disadvantages. The
hugely popular object-oriented programming, for example, makes con-
structing large systems possible at all and improves product quality in most
cases. Nevertheless, engine control software at Bosch is still developed in
a functional manner, because using object-oriented technology would only
make the system more complex and slower.

This example makes it clear that there must be some kind of evaluation for
new technologies. No engineer would build a bridge with new and un-
tested material. The same applies to software engineers: Using a new pro-

2 Background

 22

gramming paradigm without testing it properly may result in a disaster,
namely low product quality and time/cost overruns.

The first steps in investigating the possibilities and limitations of new
technologies are usually taken by experimenting. With respect to this,
software engineering is not any different from other engineering sciences.
Once the properties of the examined technique/method/tool are clear, most
engineering sciences take the next step: simulation. Simulation enables the
experimenter to examine the test object in an environment different from
the usual one with relatively little extra effort.

Software engineering has only recently started to discover the possibilities
of simulation. In this section, the benefits of simulations will be discussed,
as well as the question what to simulate. Two different simulation ap-
proaches will be introduced later in this chapter, as well as their combina-
tion.

Three main benefit classes of software development process simulation can
be identified: cost, time and knowledge improvements. Cost improvements
originate from the fact that conventional experiments are very costly. The
people needed as experimental subjects are usually employees. This makes
every experimentation hour expensive, since the subjects get paid while
not immediately contributing to the company’s earnings. Conducting a
simulation instead of a real experiment saves the cost for experimental
subjects.

Time benefits can be expected from the fact that simulations can be run at
(almost) any desired speed. While an experiment with a new project man-
agement technique may take months, the simulation may be sped up al-
most arbitrarily by simply having simulation time pass faster than real
time. On the other hand, simulation time may be slowed down arbitrarily.
This is done in biological processes simulation, for example. It might be
useful in a software engineering context when too much data is accumu-
lated in too little time and therefore cannot be analyzed properly. While in
the real world, decisions would have to be based on partial information,
the simulation can be stopped and the data analyzed. When the analysis is
complete, then the simulation can be continued with a decision based on
the completely analyzed data.

Knowledge improvements stem mainly from two areas: Simulation can be
used for training purposes and experiments can be replicated in different
contexts. Training software engineers in project management, for example,
requires a lot of time. The trainee needs to make mistakes to learn from,
which in turn cost time and money in the project, and has to be instructed
to prevent him from making real bad mistakes which would cost even
more time and money. Training them in a laboratory setting is even worse.
Using a simulation environment such as the one introduced in [Nav02] en-
ables the trainee to experience immediate feedback to his decisions. The

2.3 Virtual Experiments

 23

consequences of choosing a certain reading technique, for example, do not
occur months after the decision, but minutes. This way, the complex feed-
back loops can be better understood and mistakes be made without endan-
gering everyday business.

Simulations can also be used to replicate an experiment in a different con-
text, for example with less experienced subjects. If the properties of the
experimental objects are sufficiently explored, the consequences of such
changes can be examined in simulations instead of costly experiment repli-
cations. Learning from simulations can save both time and money, com-
pared to real experiments.

Another useful application of simulation are high-risk process modifica-
tions. This may be (yet) uncommon processes, or catastrophe simulations.
An example for the first is Extreme Programming, which seemed to con-
tradict all software engineering principles of documentation and planning
at first, but proved beneficial in certain situations after all. When high-risk
process changes are to be examined, simulations can provide a sandbox in
which the changes can be tried out without any consequences. If the results
show the proposed changes to be a complete letdown, at least no money
was spent on expensive experiments.

A catastrophe simulation can investigate extreme process changes, for ex-
ample the loss of key persons in a project. While it is clear that this will in-
fluence the process and its outcome noticeably, determining quantitative
effects can only be done in an experiment. Will it be 20% delayed, or
200%? What about product quality? Since this situation rarely occurs, this
kind of real experiment is not conducted because of the high costs. A
simulation does not have such high costs. It probably also does not forecast
the exact numbers, but nevertheless, it shows their magnitude. It may also
show key problem areas, which may then be addressed in real life, to ab-
sorb the worst consequences of the hypothetic catastrophe.

The following classification of simulations follows Kellner et al.
[KMR99]. The authors have determined relationships between model pur-
pose and what has to be modeled, as well as classified approaches how to
simulate.

When a simulation is to be set up, the first question that is to be answered
is for the purpose. What is the simulation to be used for? Is it for strategic
planning, or for training, or operational process improvement? After hav-
ing answered this question, it is possible to determine what to include in
the simulation, and what to leave out. To structure this decision, the model
scope, result variables, process abstraction and input parameters can be
distinguished.

The model scope must be adapted to the model purpose. Let’s say a soft-
ware company wants to test a new reading technique for defect detection.

2 Background

 24

Clearly, the inspection process must be modeled, but changes to the read-
ing technique will most likely have other effects later in the development
process. The defect density might be higher, therefore lowering product
quality and increasing rework time. This must be considered in the model
because otherwise, the impact of the process change is not reflected cor-
rectly in the model.

According to Kellner et al. [KMR99], the model scope usually reaches
from a part of the lifecycle of a single product to long-term organization
considerations. They introduced two sub-categories: time span and organ-
izational breadth. Time span is proposed to be divided triply: Less than 12
months, 12–24 months, and more than 24 months. Organizational breadth
considers the number of product/project teams: less than one, exactly one,
or multiple teams involved.

The result variables are mandatory for answering the questions posed
when determining the model purpose. Variables can be thought of as arbi-
trary information sources in an abstract sense here, however, most models
include variables such as costs, effort, time consummation, staffing needs
or throughputs. The choice of variables depends once again on the purpose
of the model. If the purpose is to predict overall end-of-project effort, vari-
ables other than the ones needed for predictions at the end of every major
development step must be measured.

Questions like this also influence the level of abstraction at which the
model is settled. If effort at every major development step is to be deter-
mined, the model probably needs a finer granularity than if only overall
end-of the project effort is the focus. In any case, it is important to identify
key activities and objects (documents) as well as their relationships and
feedback loops. In addition, other resources such as staff and hardware
must be considered. Depending on the level of abstraction, this list gets
more or less detailed.

Finally, input parameters must be determined. They depend largely on the
desired output variables and the process abstraction. In general, many pa-
rameters are needed for software process simulation; the model by Abdel-
Hamid and Madnick [AHM91] requires several hundred. Kellner et al.
[KMR99] provide some examples: effort for design and code rework, de-
fect detection efficiency, personnel capabilities,… Figure 2.3 illustrates the
relationships among the aspects described above.

2.3 Virtual Experiments

 25

Model Purpose:
Key questions to address

Model Scope:
Organizational breadth,

time span

Input Parameters:
Data and information
needed to compute

result variables

Result Variables:
Metrics/model outputs
designed to address

key questions

Process Abstraction:
Level of process
detail captured

Figure 2.3: Relationships among model aspects after [KMR99]

After determining the purpose of the model and what to include, the choice
of a simulation technique comes up. The continuous and the discrete simu-
lation approach will be introduced in sections 2.3.3 and 2.3.4, as well as
their combination (Section 2.3.5). In addition to that, there are several
state- and rule-based approaches, as well as queuing models [1299].

Simulation techniques may be distinguished into visual and textual mod-
els. Most models support some kind of visual modeling today, to ease de-
velopment of the models. Some modeling tools support semi-automatic
validation functionality, e.g., Fraunhofer IESE’s Spearmint. Appropriate
possibilities to specify interrelationships among entities of the model en-
able accurate modeling of the real world. Continuous output of result vari-
ables as opposed to only presenting the results allows monitoring the simu-
lation run and early intervention. Interactive simulations allow for altering
input variables during execution.

Simulations can be entirely deterministic, entirely stochastic or a mix of
both. Entirely deterministic models use input parameters as single values
without variation. The simulation needs to be run only once to determine
its results. A stochastic simulation assumes random numbers out of a given
probability distribution as input parameters. This recognizes the inherent
uncertainty in software development, especially when evaluating human
performance. Consequentially, several runs are needed to achieve a stable
result. Batch runs of simulations with changed input parameters simplify
this approach significantly.

2 Background

 26

A sensitivity analysis explores the effects of input variable variations on
the result variables. This has two advantages: First, the researcher knows
how much variation in the results has to be expected due to variations in
input parameters, and second, he can identify the parameters with the big-
gest influence on the result. These should be handled and examined with
special care.

Finally, to obtain valid results from the simulation, calibrating the model
against the real world is necessary. This should be done by integrating ac-
tually measured data into the model, and comparing the results of simula-
tions of real processes with the respective real-world values. Accurate
measuring of input parameters and result variables is mandatory here. In
many cases, however, there is no suitable real-world data available. In this
case, Kellner et al. [KMR99] suggest trying to construct the data needed
from data available (effort → costs by assuming an average hourly rate) or
retrieve it from original documents, rather than final reports, or obtain es-
timates from the personnel or published values.

2.3.3 Continuous Approach (System Dynamics)

In the early 1970s, the Club of Rome started an initiative to study the fu-
ture of human activity on our planet. The initiative focused on five physi-
cal and easily measurable quantities: population, food production, indus-
trial capital, production and non-renewable natural resources [Pfa01]. A
research group at the Massachusetts Institute of Technology (MIT) devel-
oped a societal model of the world. This was the first continuous simula-
tion model: The World Model.

Today, most continuous models are based on differential equations and/or
iterations, which take several input variables for calculation and in turn
supply output variables. The model itself consists of nodes connected
through variables. The nodes may be instantaneous or non-instantaneous
functions. Instantaneous functions present their output at the same time the
input is available. Non-instantaneous functions, also called memory func-
tions, take some time for their output to change.

This approach of a network of functions allows simulating real processes
continuously. An analogy would be the construction of mathematical func-
tions (add, subtract, multiply, integrate) with analog components like resis-
tors, spools or condensers. Even complex functions containing partial dif-
ferential equations that would be difficult or impossible to solve analyti-
cally or numerically may be modeled using the three basic components
mentioned above. Before computers became as powerful as they are today,
the analogue approach was the only way to solve this kind of equations in
a reasonable time. Due to the continuous nature of the “solver”, the result
could be measured instantly.

2.3 Virtual Experiments

 27

Of course, simulating this continuous system on a computer is not possible
due to the digital technology used. To cope with this, the state of the sys-
tem is computed at very short intervals, thereby forming a sufficiently cor-
rect illusion of continuity. This iterative re-calculating makes continuous
models simulated on digital systems grow complex very fast.

In software engineering contexts, continuous simulation is used primarily
for large-scale views of processes, like management of a complete devel-
opment project, or strategic company management. Dynamic modeling en-
ables us to model feedback loops, which are very numerous and complex
in software projects.

2.3.4 Discrete Approach

The discrete approach shows parallels to clocked operations like car manu-
facturers use in their production. The basic assumption is that the modeled
system changes its state only at discrete moments of time, as opposed to
the continuous model. So, every discrete state of the model is characterized
by a vector containing all variables, and each step corresponds to a change
in the vector.

Example. Let’s consider a production line at a car manufacturer. Simpli-
fied, there are parts going in on one side and cars coming out at the other
side. The production itself is clocked: Each work unit has to be completed
in a certain amount of time. When that time is over, the car-to-be is moved
to the next position, where another work unit is applied. (In reality, the
work objects move constantly at a very low speed. This is for commodity
reasons and to realize a minimal time buffer. Logically, it is a clocked se-
quence.) This way, the car moves through the complete factory in discrete
steps.

Simulating this behavior is easy with the discrete approach. Each time a
move is completed, a snapshot is taken of all production units. In this snap-
shot, the state of all work units and products (cars) is recorded. At the next
snapshot, all cars have moved to the next position. The real time that
passes between two snapshots or simulation steps can be arbitrary. Usually
the next snapshot of all variables is calculated and then the simulation as-
signs the respective values. Since the time needed in the factory for com-
pletion of a production step is known, the model describes reality appro-
priately.

A finer time grid is certainly possible: Instead of viewing every clock step
as one simulation step, the arrival at a work position and the departure can
be used, thereby capturing work and transport time independently.

The discrete approach is used in software engineering as well. One impor-
tant area is experimental software engineering, e.g., concerning inspec-

2 Background

 28

tions. Here, a discrete simulation can be used to describe the process flow.
Possible simulation steps might be start and completion of activities and
lags, together with special events like (late) design changes. This enables
discrete models to represent queues.

2.3.5 Hybrid Approach

Continuous simulation models describe the interaction between project
factors well, but lack in representing discrete system steps. Discrete simu-
lation models perform well in the case of discrete system steps, but make it
difficult to describe feedback loops in the system.

To overcome the disadvantages of the two approaches, a hybrid approach
as described by Martin and Raffo [MR00] can be used. In a software de-
velopment project, information about available and used manpower is very
important. While a continuous model can show how manpower usage lev-
els vary over time, a discrete model can point out bottlenecks, for example
inspections. Because of insufficient manpower, documents are not in-
spected near-time, so consumers of those documents have to wait idly,
therefore wasting their manpower.

In a purely discrete approach, the number of inspection steps might be de-
creased to speed up the inspection process. While possibly eliminating the
bottleneck, this probably introduces more defects. The discrete model
would not notice this until late in the project, because continuously chang-
ing numbers are not supported. The hybrid approach, however, would in-
stantly notice the increase, and – depending on how the model is used for
project steering – more time would be allocated for rework, possibly to the
extent that the savings in inspection are overcompensated. Thus, the hybrid
approach helps in simulating the consequences of decisions more accu-
rately than each of the two single approaches does.

2.3.6 Benefits

Following Kellner et al. [KMR99], benefits in the following areas can be
expected from simulation in software engineering:

- Strategic management issues. These can be questions like whether to
distribute work or to concentrate it in one spot, or whether develop-
ment should be done in-house or be out-sourced, or whether to follow
a product-line approach or not.

- Planning. Planning includes forecasting schedule, costs and product
quality and staffing needs, as well as considering resource constraints
and risk analysis.

2.4 Software Process Modeling

 29

- Control and operational management. Operational management com-
prises project tracking, oversight of key project parameters such as
project status and resource consumption, comparing actual to planned
values, as well as operational decisions such as whether to commence
the next major phase (e.g., coding, integration testing).

- Process improvement and technology adoption. This includes evaluat-
ing and prioritizing suggested improvements before they are imple-
mented as well as ex post comparisons of process changes against
simulations of the unchanged process with actually observed data.

- Understanding. Simulation models can help process members to better
understand process flow and the complex feedback loops usually
found in software development processes. Also, properties pervasive
through many processes can be identified.

- Training and learning. Similar to pilots training in flight simulators,
trainees can learn project management with the help of simulations.
The consequences of mistakes can be explored in a safe environment
and experience can be collected that is equivalent to years of real-
world experience.

2.4 Software Process Modeling

An area closely related to simulation is software process modeling. Model-
ing the software process is the logical step that has to be taken before a
simulation can commence. The process model is converted into an execu-
table form for the simulation. Thus, without a process model correctly de-
scribing the software process, no sensible simulation can be achieved.

To understand software process modeling, one must first understand how
software is developed in the real world. On a very abstract level, an or-
ganization uses inputs and resources to produce output. The organization
can be a manufacturing company, a knowledge company, or a research in-
stitute. Every organization owns certain resources, e.g., real estate, build-
ings, people (or their knowledge), or financial assets. Inputs are trans-
formed into outputs using the available resources. Inputs may be raw mate-
rial, or a customer’s problems, and outputs assembled machinery or a solu-
tion for the customer’s problems.

Generally, the transformation process adds value to the inputs, so that the
outputs can be sold in some form. This way, the organization earns money
to replenish resources and to grow. Not all organizations want to grow in
size, though. Many research institutes grow to a “reasonable” size, and
then concentrate on expanding knowledge, not personnel. Here, the surplus
from the outputs is used for resource improvement only.

2 Background

 30

A traditional example for such an organization would again be a car manu-
facturer. It uses raw material such as steel or aluminum as inputs and pro-
duces cars as output. The transformation process is fulfilled using the
manufacturer’s resources: buildings, machines, the workers, and engineers
constructing the cars. Earnings are used to improve the transformation
process, in order to produce the same output at lower input and resource
consumption or to produce more or higher-quality output at the same input
and resource consumption.

A software organization works similarly and differently at the same time.
Similarly, because it also uses inputs and resources to produce outputs, and
differently because most of its inputs and outputs are not physical objects,
but immaterial. This results in the absence of any sort of production proc-
ess. Using the car manufacturer example, the process would be over when
the car is fully developed – it would never be built. This clearly distin-
guishes software development processes from traditional engineering
processes. However, software organizations share with traditional organi-
zations the urge to improve their processes.

The more complex the software products became, the more obvious be-
came the need for process improvements. A variety of techniques, methods
and tools were developed to cope with this, such as different programming
paradigms, higher-level programming languages, and tools to administer
the complexity of developing software products, the so-called IDEs3.
While this was sufficient to reach a certain quality standard for smaller
projects, it was not enough to support the organization-wide process im-
provements needed.

Software process modeling aims not at helping the development process
with a set of individual tools, but at understanding the software organiza-
tion as a whole. Figure 2.4 shows a simplified model of the software de-
velopment process. In this model, products and activities alternate. Even in
this primitive form, it gives a clue what must be considered in a software
project. Coding cannot start before the requirements are fixed, for exam-
ple.

3 IDE = Integrated Development Environment

2.4 Software Process Modeling

 31

Figure 2.4: Simplified software development process

Of course, real process models are way more complex than the example
presented here. They usually operate on different levels of abstraction, be-
cause system complexity is too high to be sensibly modeled in one model.
A two-level approach might model the complete process on a higher
abstraction level, considering major process steps, and model each of the
steps individually on a lower abstraction level, thus in more detail. The
two levels need to be connected in some way, though, so changes in a sub-
process are reflected in the global model and vice versa.

This approach of modeling the complete process has been pursued by
manufacturing companies for a long time. Modeling a software company is
driven by the same goals (time, costs, quality), but typically models a to-
tally different environment. In a manufacturing company, mostly technical
processes are modeled (with the focus on controlling machinery), whereas
a software company consists mainly of people. Controlling machinery
(hardware) should only form a small part of the development process, the
real work is done by human minds. This makes software processes difficult
to model per se, because modeling creative processes is not understood
very well yet. Additionally, multiple feedback loops make the situation
more complicated.

One consequence of those feedback loops are changes to the development
process. These changes are not as severe and do not happen as often in
manufacturing processes because auf two reasons. First, the production
processes are much better understood than software development proc-
esses, and second, the intention of (automated) manufacturing is to have
only very few changes, for this would change the whole production line.
Software development processes are rather young; the software community
is still struggling to evolve from the art to the profession. Consequentially,
there is no engineering handbook yet, which says what to do in certain
situations.

2 Background

 32

So, modeling software development processes faces two great challenges.
First, the processes to be modeled are only partially researched, and sec-
ond, managing changes in the processes is difficult. Models need to be up-
dated constantly to match new research results and real-world evolutions.
In general, process modeling goals comprise but are not limited to
[Mün02]:

− enable human understanding and communication,
− improve software development activities,
− support project management,
− guide project team members,
− trace project history, and
− automated execution of processes.

If the challenges can be addressed adequately, process modeling holds
several benefits. By modeling the process, it is understood better, some-
times even understood at all. Often problems within the process, which
have gone unnoticed for years, become obvious when it is modeled. The
modeled process can then be optimized on paper, potential changes can be
drafted and the consequences predicted. Finally, if the process model is en-
riched with empirical data, the process can be simulated and traced, thus
enabling better project and resource planning and better directing of proc-
ess changes, which lowers time, costs and quality risks overall.

There exist two main approaches to construct a model. The first approach
could be described as theoretical approach, the second one as empirical.
The theoretical approach builds the “ideal” process by capturing general
principles of a methodology. This makes instantiation and refinement nec-
essary. Most probably, the real-world process will differ from the con-
structed one. An example for such a model is the waterfall process model,
which does not work out exactly as planned in the real world. Such theo-
retical models are often used prescriptively.

The empirical approach tries to transfer the real-world process into a
model by acquiring its characteristics as accurately as possible. The result-
ing process models are then revised using experience from other processes.
These models are mainly descriptive, for example, IDEF0 models.

Many tools and languages exist for process modeling: Appl/A, Funsoft
Nets, Marvel Strategy Language, Statemate, MVP/L or IDEF0, just to
name a few. They have in common that they want to help formalize the
software development process, but differ in many other areas, e.g., the
level of abstraction or the level of integration. Some regard a rather ab-
stract process, some a more concrete one. Some only present a workbench
with an (unconnected) set of tools, some an integrated process engine. A
typical structure for process modeling tools of the latter kind is depicted in
Figure 2.5 [Mün02].

2.4 Software Process Modeling

 33

Project specific | Cross-project .

Planning ...Knowledge Mgmt.DesignCreate RequirementsControlling

Project
planning

tool

Test
tool ... StP ... Java IDE

Process engine

Design Patterns

Experience .

User Interface

Intermediate
Layer

Tools

Database

Figure 2.5: Typical structure for process modeling tools

Different process models and modeling tools support process improvement
in a different way. Depending on notation and understandability of the
model, it might be easy to identify process weaknesses ad-hoc and inte-
grate respective changes. Other notations may support measurement-based
improvement, for example the GQM approach [BCR94b].

In this work, a software process model is enriched with empirical data to
improve model quality and to enable more accurate predictions for the real
process. The resulting model may then be executed in a process engine to
compare the model with real processes.

 35

3 Combining Real and Virtual Experiments

3.1 Overview

If there are already that many experiments, real and virtual, why is there
the need for combining them, and with this creating an even more compli-
cated experiment universe? The answer lies in the industrial demands for
faster and cheaper creation of higher-quality software. Technology alone
cannot deliver the massive improvements longed for in these three key ar-
eas. Despite new programming paradigms, more sophisticated tools and
modern integrated development environments, most software projects suf-
fer from significant time and financial schedule overruns and/or poor
product quality.

New technologies are being developed continuously to overcome these is-
sues. The problem is, however, that no known technology is optimal for
every situation. Therefore, new technologies must be tested in the target
environment for their suitability. While this has been understood quite
early, it is still not very popular among management due to the costs in-
volved in setting up experiments. Consequentially, simulations have been
tried to establish to reduce costs while keeping the advantages of experi-
ments.

The two preceding chapters made clear the specific advantages and draw-
backs of real and virtual experiments. To overcome the respective limita-
tions, the recent research approach of combining real and virtual experi-
ments has proven promising. This combination allows reducing cost and
time needed through simulating experiments while at the same time almost
fully preserving the quality of the knowledge gained through the experi-
ments. It can be utilized in decision support, software project management
and training as well.

One view on virtual and real experiments is the laboratory view depicted
in Figure 3.1. The virtual laboratory is responsible for simulations; the real
laboratory conducts conventional experiments, namely case studies and
controlled experiments. Between the two, data is exchanged. Each of the
labs has its own advantages and drawbacks. By combining the two, draw-
backs of one lab may be compensated with advantages from the other.

3 Combining Real and Virtual Experiments

 36

Virtual LabVirtual Lab Real LabReal Lab
Time & Cost Reduction

Exact scoping of real experiments

Model construction, calibration, validation

Model extension

Sandbox training

Decision support

Visualization Enhancements

Figure 3.1: Virtual and real laboratories

Real and virtual experiments may take place in three main timely fashions
(Figure 3.2). The real experiment may precede the virtual experiment, the
virtual experiment may precede the real experiment, or both experiments
may be conducted simultaneously. The first option enables using empirical
knowledge in designing, calibrating and analyzing the simulation. The
second option does the same vice versa, and the third option enables to
capture effects on a “big” process while only conducting a “small” ex-
periment. This is called online simulations.

Apart from direct connections to empirical experiments, simulations can
also be used for training purposes. Software project issues and most popu-
lar mistakes can be taught to employees in a sandbox environment. Every-
body knows the famous words “Adding people to a late project makes it
later”4, but still many project managers do exactly this. Letting them crash
a simulated project is a cheap and efficient way of education.

Many project managers complain about insufficient and confusing project
status information. But even if they have all information they need in an
easy to understand form, it is still challenging to forecast the project pro-
gress. Simulation can also help here. When entered into a simulation sys-
tem, information gained in a real experiment could be used in a faster than
real-time simulation of the whole project. This may reveal potential bottle-
necks before they appear, so countermeasures can be taken early. This de-
cision support may help project managers founding their decisions more
on facts than on intuition.

4 Also known as “Brooks’ Law” [Bro95]

3.2 Using Empirical Knowledge for Simulation

 37

Real

Virtual

t

Figure 3.2: Possible timely arrangements of real and virtual experiments

Simulation can also help communicating with the customer. A seemingly
little change in requirements may actually delay the project by months.
This sometimes is hard to explain to non-technical personnel, thus growing
anger on both sides. A simulation could scale up an appropriate real ex-
periment and thus visualize the consequences of a change request. This
helps both understanding and evaluating the costs, thereby enhancing cus-
tomer satisfaction. The same applies to the own management.

3.2 Using Empirical Knowledge for Simulation

In order to take advantage of a simulation model at all, it must somehow
describe reality. Any model only reflects a part of the real world, and is
therefore easier to understand and process, but also never tells the whole
truth, for some information from reality is left out. Whenever working with
models, this should be kept in mind. The closer the model relates to the
real world, the better the behavior of reality can be understood and also
forecasted.

3.2.1 Determine Simulation Behavior

In order to describe the real world as exactly as needed and possible, it is
necessary to include measures from the real world in the model. This as-
certains and increases model validity. Including this data can be done vir-
tually anywhere in the model. It can be used as an input, to give the model
a defined starting point to begin with, to evaluate the consequences of this
combination of input data and process modeled. During the simulation run,
real-world data can be used to determine model behavior. This can be done
completely deterministic, for example “If effort for activity A is lower than
150 hours, assume 200 hours for activity B, otherwise assume 300 hours”,
but it can also be done partially nondeterministic, e.g., on the base of
knowledge-based systems. Such a system could analyze the situation (that
is, the model state as determined by its variables) and try to find similar
situations with their consequences. After completion of the simulation, the
simulation results can be compared to real-world data to determine the
quality of the simulation model and which parts need improvement.

3 Combining Real and Virtual Experiments

 38

Most of these uses of empirical data require the real experiment to have
taken place before the virtual experiment. For input data, this is obvious.
Since model behavior needs to be clear when the simulation starts, the data
used at this point also needs to be available at simulation start. Only output
data can be made available after the simulation ends. This delays evalua-
tion of the simulation model, but does not affect the simulation itself.

3.2.2 Enhance Simulation Model

Once the real experiment is conducted and the data analyzed, it can be
used to enhance the simulation model, thus the virtual experiment. The
model can be calibrated by simulating the real experiment and comparing
the outcomes. By doing this, the quality of the simulation model can be
evaluated, and model parameters can be adjusted to better reflect reality. If
discrepancies between the results of real and virtual experiments are much
greater than expected, revising the concept of the virtual experiment might
be sensible: Did it really simulate what was expected, or were maybe some
important factors left out?

If the results of the simulation and the real experiment sufficiently corre-
spond, the existing simulation model can be expanded using empirical
data. For example, if the simulation model fairly accurately describes in-
spection efficiency and effectiveness, a new module might be introduced
considering time and costs of the inspection in respect to the quality of de-
fect detection. For this, the real-world connections need to be determined
in the real experiment, to enable building that part of the simulation model.
An initial calibration can be done with the data available from the real ex-
periment, followed by fine-tuning with data from other experiments, if
their context is known sufficiently.

3.2.3 Prepare Simulation Model for Data Integration

If the virtual experiment takes place before the real experiment, only little
empirical knowledge can be used for the simulation. Since measured data
is not yet available, only the simulation design can be prepared to be en-
hanced with empirical data in the future. This includes a modular design to
add additional influence factors and an easy to change configuration of the
simulation model in terms of altering model behavior. If model parameters
are hard-coded into the model, it will be more difficult to include discover-
ies made in experiments than when text-based configuration files are used,
for example.

3.2 Using Empirical Knowledge for Simulation

 39

3.2.4 Determine Model Quality

Simulating past real experiments enables the experimenter to get a feeling
for the simulation model, to determine its accuracy and mean and maxi-
mum deviations from reality. This is important if the simulation model is
going to be used to answer specific questions: While it is vital to know the
answer, it is even more important to know how much it can be trusted.

3.2.5 Benefits

Constructing, Calibrating and Validating Simulation Models

Using empirical knowledge, a simulation model can be brought “to life” at
all. It may be easy to capture the actual process, that is, the sequence of
process steps. This does help understanding the process, but not the inter-
dependencies and the dynamic behavior. A good analogy might be a black-
and-white photograph compared to a color video. The photograph shows
what is present, while the video gives more detailed information about eve-
rything and at the same time shows the dynamic behavior. So, including
empirical data during the construction of a simulation model yields a much
more accurate model.

Validation of existing models is also vital to simulations. The processes
modeled in the first place may change over time. If this is not reflected in
the simulation model, the model produces incorrect output data and even-
tually becomes unreliable. So, constantly validating a simulation model
against the real world is beneficial to simulation results. The same is true
for calibration: Even if the modeled process per se did not change, em-
ployee skills may change over time. Reflecting this in the simulation
model, e.g., by altering model parameters results in more accurate fore-
casts.

Extending Existing Models to new Areas

Most models are created in increments. The initial core model is extended
with more modules to describe more aspects of reality. Again, empirical
knowledge helps constructing, validating and calibrating these add-on
modules. By integrating empirical data from not yet modeled areas, the
overall simulation model can be extended to cover these areas. This en-
hances model quality and may result in better forecast capabilities due to
the more exact image of reality.

3 Combining Real and Virtual Experiments

 40

3.3 Using Simulation for Real Experiments

The economically more interesting knowledge transfer is from simulation
to real experiments. Here, more monetary benefits are expected by saving
experimentation time and thus reducing experimentation costs. This sec-
tion explains which information gained through simulations can be used in
real experiments, or which real experiments might be replaced by simula-
tions.

3.3.1 Scoping of Real Experiments

When a simulation is run prior to a real experiment, this means that the
simulation results may be used to set the real experiment’s parameters
more accurately than without that information. In the first place, it can help
determining which real experiments are needed most. Let’s look at a situa-
tion where several process changes are proposed in order to improve prod-
uct quality while not increasing delivery time or costs. Since real experi-
ments are expensive, usually not every proposal is actually examined.
There is usually only a limited budget for experiments, which leads to
someone making a decision which experiment to conduct and which not.
Whether it is a single human or a group like a steering committee, the de-
cision is always based on a mixture of facts, experience and intuition.

To better support these decisions, simulations can be used to determine
which of the possible process changes are likely to have the desired effect.
If the simulation model adequately reflects reality and has proven to pro-
vide trustworthy results, only the process changes that prevailed in this
first evaluation stage may be worth an extensive examination. In any case,
the simulation model gives advice why or why not a certain proposal
worked out, and where the problem was. Using this information, the pro-
posed process change can be reworked or abandoned. Examining only the
promising proposals optimizes the ratio of money spent and results
yielded.

The same prioritization may be made at single experiment level. Input and
output variables may not change smoothly over time, but rather little
changes to an input variable may result in great changes in output vari-
ables. An example is given in Figure 3.3. Assuming that variable x
changes constantly, variable y shows noticeable behavior: During a rather
little change of x denoted as a, y changes the amount of b. When a simula-
tion yields this result, special attention should be paid to the “a” part in a
real experiment. The other parts can rather safely be neglected because no
great changes to y are to be expected from changes of x there.

3.3 Using Simulation for Real Experiments

 41

a

b

x

y

Figure 3.3: Experimental point of interest

3.3.2 Determine Data Needs

There is only little simulation knowledge that can be used in the experi-
ment when the real experiment is conducted before the simulation. If the
two experiments are planned in advance as a unit, there are, however, at
least limited possibilities. Depending on the purpose and scope of the
simulation, the experimental setup may be designed to suit the specific
needs of the simulation. For example, if there is no simulation model at all
yet, basic data about the process is needed. The real process must be ana-
lyzed and the experiment set up accordingly, with basic measures to be re-
corded. If there already is a simulation model, maybe even in a decent de-
gree of maturity, the focus might be on fine-tuning the model by including
more input factors that were neglected so far. The real experiment must re-
flect that in the data measured. This way, at least some meta data from the
simulation can be used in the experiment.

3.3.3 Data Validation/Sensitivity Analysis

Supposing there is a decent simulation model available, it can be used to
validate data obtained in real experiments. When the simulation model fits
the real situation, the simulation parameters can be adjusted to the ones in
the real experiment and the simulation of the real experiment can then be
run. This way, not the simulation model is validated, but the real experi-
ment. The simulation results should vary from the real results only about
the same as in simulation validation runs. If variations are too great, this

3 Combining Real and Virtual Experiments

 42

might indicate problems with the real experiment’s results. This way, a
quick sensitivity analysis of the experimental results can be conducted.

3.3.4 Benefits

Reduction of Experimentation Time and Cost

Generally, wherever a real experiment can be replaced by a virtual experi-
ment, this saves cost. Any real experiment needs test subjects, which in
turn cost money, whether they are hired externally or chosen from com-
pany staff. The real experiment must be set up every time it is to be con-
ducted. A virtual experiment also needs to be set up, but execution is al-
most free then. Replicating a real experiment requires almost the same ef-
fort as the first time, whereas replicating a virtual experiment merely con-
sists of altering input and model parameters. So, there may be significant
cost benefits from using simulations for real experiments.

Since simulations may be run faster than real-time, a virtual experiment
can be conducted in a shorter time than the corresponding real experiment.
This saves time, which results in faster integration of new technology into
the development process. Additionally, time-to-market of the product can
be reduced when using simulation tools for project steering and decision
support. Simulation can help making better decisions concerning which
real experiment to conduct and which not to.

Simulations can also replace replications and (simple) variations, assuming
a decent simulation model. Multiply replicating a real experiment with the
same input parameters using an entirely deterministic simulation model is
useless of course, since it will achieve the same results every run. Stochas-
tically scattering model and input parameters will give an impression of
the range the results will be in.

Simple variations may also be evaluated by a simulation. Research in the
simulation field is far from being complete and therefore, only simple
variations may be applied to the simulated process without falsifying the
results too much. However, these simple variations need not be evaluated
through real experiments, thus saving time and cost.

3.4 Online Simulations

When both the real and the virtual experiment are conducted simultane-
ously, this is called an online simulation. Two basic kinds of online simu-
lation can be distinguished. Both experiments can investigate the same
matter, or they may examine different matters. In the first case, the results
can be compared directly. This is useful for model calibration purposes.

3.4 Online Simulations

 43

Since this case is basically the same as the one already described in Sec-
tion 3.2, it is not discussed any further here. For the rest of this work,
“online simulation” will refer only to the case when different matters are
examined simultaneously.

3.4.1 Scale-up

Real experiments usually only cover a sub-process of a larger process, for
example, the inspection sub-process of a complete development process.
Due to the immense costs, it is virtually impossible to conduct a real ex-
periment examining a complete software development process. It might be
done with a small (<10 people) team, but this does not help in industrial
software development where development teams consist of hundreds of
people. So, only a simulation can take care of the complete process.

Nevertheless, parts can be examined in real experiments. To capture the ef-
fect on the complete process, real and virtual experiments can be combined
into online simulations. Typically, the simulation covers the large-scale
process with real experiments examining some selected points of interest.
This way, changes to sub-processes can be evaluated using empirical data,
while at the same time the big picture is not neglected. Altering some sub-
process, for example in duration, may result in altered feedback loops
which cannot be foreseen by only examining the sub-process in an experi-
ment. The simulation keeps track of that. This situation is exemplarily de-
picted in Figure 3.4. The simulation comprises the complete development
process, while the real experiment examines only the design review sub-
process. In this example, the often-investigated question whether to use
perspective-based reading or checklist-based reading is focused on.

The simulation starts first. Since it can be run many times faster than real-
time, the real experiment can start shortly after. It uses the output from the
simulation, namely the system design. Of course a computer system cannot
do a system design on its own. In the example, a finished project could be
used. Assuming a decent simulation model and sufficient measured data,
the simulation should come to similar results concerning effort and defects
in the design as the real project. Having replayed the old project so far, the
real experiment can be started then. The simulation is halted meanwhile,
since it is waiting for input data from the real experiment.

Once the real experiment is over, its results need to be analyzed to gather
input parameters to continue the simulation. In the example, this would be
mainly the effort spent for the inspection sub-process and the number of
defects found. The simulated rework would then commence, and after that,
the rest of the development process is simulated. When the simulation is
completed, output parameters may be compared to the measured data from
the real project. How did the changed sub-process affect the whole pro-
ject? Project duration (and linked with this, project costs) is interesting in

3 Combining Real and Virtual Experiments

 44

this context, but also the resulting product quality. Especially remarkable
effects on other sub-processes can be determined, e.g., great integration
problems due to poor design inspection performance.

Real
Experiment

Real
Experiment

Requirements
Analysis

System
Design Implementation Integration

Design
2nd stage

Design
1st stage

Design
Review

Design
Rework

Preparation

Perspective-based
reading

Checklist-based
reading

Defect
Collection

Virtual Experiment

Figure 3.4: Online simulation principle

3.4.2 Training

Another field of interest is training. Any theory learned in university or
other classes can only partially be applied to reality. It must be altered,
adapted and evaluated. In this learning process, mistakes are made. While
this is dangerous in real projects, using a simulation tool is safe. Employ-
ees can practice project management in a sandbox. Here, no real experi-
ments are held during a simulation run, but the trainee acts as a project
manager, making decisions and having the simulation model execute them.
In this case, the real experiment is the trainee himself. For example, if the
simulated inspection results in many defects found, is a re-inspection after
rework sensible? In the real world, this would be a major decision, influ-
encing every following project step. In a simulation, making the wrong de-
cision does not endanger any real projects, but shows the trainee the con-
sequences clearly, yet in a safe environment.

Thus, employees can be trained in a safe environment using simulation
technology. Whether new employees need training to understand the com-
pany processes or there are regular trainings to improve the knowledge of
employees, all mistakes can safely be made in a simulation. They do not
harm the real-world processes, but are a good means of learning how to

3.4 Online Simulations

 45

handle specific situations. Another benefit is that the consequences of the
trainee’s decision appear almost immediately, whereas in the real world,
the connection between decision and its consequences is not always obvi-
ous, due to the potentially long time between decision and consequence.
Simulations reduce this lag to at worst hours, at best only seconds, depend-
ing on the complexity of the simulation model.

3.4.3 Benefits

Inexpensive Scale-up

Online simulations combine the better of the two worlds of simulation and
real experiments. Using online simulations, specific issues can be exam-
ined while at the same time the big picture is not neglected. This adds
value to the real experiment, because the effects of the examined issue can
be evaluated regarding the complete process.

Immediate Feedback

Another benefit of online simulations concerns the psychological factor. If
an experiment for example comparing different reading techniques is con-
ducted, no immediate feedback is supplied to the test subjects as well as
the experimenters. This may result in poor performance due to lack of mo-
tivation and thus distorted results. A typical question in this context is
“What is this good for, after all?” Using an overlying simulation that sup-
plies data on the effects on the rest of the process, this question – among
others – can be answered.

Visualization Enhancements

It is especially difficult to explain the consequences of software develop-
ment process changes to non-technical persons, e.g., management. Deci-
sion-makers in the management are often not from the software engineer-
ing domain. A seemingly small requirements change (for the customer)
may require repeating large parts of the development process, which de-
lays delivery time significantly. Any manager is much more likely to un-
derstand and approve this fact when there is a simulation that visualizes the
necessary process changes.

An analogy from the automobile industry would be a car order. The late
requirements change could be the demand for a car that is 50 centimeters
longer. This is obviously a major change; however, a person without
knowledge about car production might wonder why it is possible to get
another color, but not a longer car. Once this person sees how production
processes need to be changed for both requests, this becomes clear.

3 Combining Real and Virtual Experiments

 46

This visualization is not only helpful with customers; it also helps the soft-
ware company. It can help determining how many changes a customer
request involves to the process. A preliminary schedule update may be ex-
tracted, so the cost for the request can be forecasted correctly. This cost
forecast can then be used for a contract with the customer. The exact de-
termination of the cost is vital to any company: If the costs are higher than
the revenue too often, it will eventually doom the company.

Project monitoring may also benefit from the combination of real and vir-
tual experiments. While in conventional project monitoring and steering,
the focus is on the past with some static forecasts for major project phases,
using combined empirical data and simulations may enhance project man-
agement significantly. Processing empirical data collected in the already
passed project phases gives the oversight that project managers are used to.
When a simulation model is added to project steering, dynamic forecasts
can be made at every point in the project, thus providing a more precise
project control.

3.5 Problems

The usefulness of every simulation model clearly depends on how exactly
it describes reality. In order to improve the model in a way that this de-
scription gets more precise, the usage of empirical data from the real world
is very important [RKP+99].The authors state that often the empirical data
is the only available and directly traceable link between model and reality.

Acquiring this data, however, often represents a non-trivial problem. First,
there is the question of what data is needed for the model. This depends
mainly on what is being modeled, and to what degree. Models for product
quality need data about defects, strategic enterprise planning models need
data about cycle time, and support planning models need both. When it is
clear what data is needed, it becomes necessary to evaluate how detailed
the data must be. This depends on the desired granularity of the model,
whether it is going to be a high-level model or shall simulate on a very de-
tailed level.

Data Collection

Once the model focus and scope are determined, collecting data begins.
This is easiest if empirical experiments can be influenced, or at least the
data collection. Data specifically needed for the simulation model can be
acquired, so there is a perfect fit of data and model. Unfortunately, this
rarely ever happens.

A more common case is the one where the model is built with an initial
data set, maybe even from a tailored experiment, but validation and cali-

3.5 Problems

 47

bration is done using other data. “Other data” mostly means older data
which has been sitting in a closet anyway. This way, modeling costs can be
reduced and the once expensively acquired data can be reused. There are
problems with this approach.

Older data may not describe the modeled aspects accurately. This is most
often found when only data “similar” to the data really wanted is available.
Sometimes, this can be compensated by deriving the desired data from the
data available. For example, if defect severity and quantity data is needed
as model input, but only data on rework is available, the defect data can be
concluded from the rework data: Longer rework suggests more and/or
more severe defects. However, this can only be done if more information
about the context is available. In the example, this would be data about the
technology used, personnel knowledge and experience and of course the
type of system that was developed.

Data Interpretation

Data on effort and defects has a great advantage: It can be quantified rather
easily. This is not the case with other data such as readability, usability and
understandability. Much data is acquired through forms where the test sub-
ject is to evaluate something on a scale, e.g., from one to ten. Extracting
this introduces noise into the data. A nine for one person maybe is more
like a five for another. Furthermore, answers to questions for readability or
usability depend largely on the person answering, much less than “objec-
tive” facts like defects.

It gets even worse when there isn’t even a scale, but the questions are an-
swered in natural language. The answers are interpreted by humans and
then transformed into the input data needed for the simulation model. This
introduces additional noise. In any case, it is important to know who an-
swered the questions. Was it a group of senior software engineering pro-
fessionals, or rather junior persons just evaluating their first project? If this
is not known, evaluating the answers for the current simulation model is
very hard and not likely to yield very reliable results.

Unknown Context

All the problems mentioned so far have one thing in common: It is more or
less obvious if there are any problems with the context. When deriving
data from other sources, the dangers are clearly visible, the same applies to
unknown test subjects or interpreted natural language answers. These dan-
gers can be discovered and accounted for, for example by comparing them
with other data, so one bad data set does not spoil the model.

Nevertheless, inherent to using older data is always the danger that certain
assumptions were made at the time the data was acquired, but that this has

3 Combining Real and Virtual Experiments

 48

not been recorded. In this case, the context is different, but this may go un-
noticed. This is maybe the greatest danger, since it might not be obvious
that there is a different context at all. If data taken from one context is
mixed with data from another in the simulation model, the simulation may
show some weird results without any indication that this is not because of
the model, but because of the data used.

Only very careful choosing of data can help with these problems. Experi-
ence can help detecting potential problems within the data, but not com-
pletely eliminate all dangers. Choosing data and integrating it into the
model is critical to model quality and should be accomplished with great
caution.

3.6 Summary

In addition to isolated real or virtual experiments, combining both ap-
proaches holds additional advantages in several fields of application.
When using empirical knowledge in simulations, the simulation model can
be refined in an iterative way by integrating the experiences from real ex-
periments held over time. Thus, more accurate predictions can be made
with the simulation model. The model itself can already be based on real
data acquired through controlled experiments or case studies, as opposed
to purely artificial models in a simulation-only approach.

The simulation model can also be expanded by using experimental results.
Aspects of the real world not yet considered can be included in a new ver-
sion of the simulation model. This way, a model can grow to a more com-
prehensive model over time. The simulation model can also be prepared
for later data integration, if data from real experiments is not yet available.
By simulating appropriate real experiments, model quality can be checked.

Using simulations for real experiments holds some more synergy effects.
First of all, real experiments can be prioritized and scoped. This means that
before (expensive) real experiments are held, simulations are used to de-
termine what to examine in which detail. Simulations can also help deter-
mine which kind of data is needed, so real experiments can be planned ac-
cording to actual needs, rather than intuition. Finally, simulation results
can be used as a quick sensitivity analysis of real experiments’ results.

As can be seen, combining real and virtual experiments holds many bene-
fits. It may not always be easy to express these benefits in numbers. How-
ever, this should not keep the software engineering community from ex-
ploiting them. Table 3.1 gives an overview over the expected benefits.

3.6 Summary

 49

Knowledge Usage Benefits
Empirical → Simulation Constructing, calibrating and validating simulation models

Extending existing models to new areas
Evaluating simulation models

Simulation → Empirical Reduction of experimentation time and cost
Online simulations (↔) Inexpensive scale-up

Employee motivation through immediate feedback
Visualization enhancements
Training

Table 3.1: Benefit overview

 51

4 Simulation Model Development

4.1 Overview

As an example for the combination of simulation and real experiments, a
simulation model of an inspection process has been developed. The inspec-
tion process has been chosen because most of the research being done is
situated in this area. This supplies a good knowledge basis for modeling as
well as sufficient real experiments to calibrate and test the model.

More precisely, the simulation model used in this work represents an ex-
periment conducted by Basili et al. in 1994/95 [BGL+96] and two replica-
tions by Ciolkowski et al. in 1995/96 [CDLM97]. The initial experiment
and its replications provide three independent data sets to calibrate the
model with.

The simulation model described in this section implements the combina-
tion of real and virtual experiments described in Section 3.2. Using empiri-
cal knowledge, the simulation model is developed and calibrated. To re-
duce complexity, the model concentrates on two key factors influencing
the inspection process. These two are the document that is to be inspected,
and the set of reviewers available. The document is characterized through
the attributes number of defects, size and complexity; each reviewer is
characterized through the attributes experience, expertise, and his individ-
ual defect detection rate (iDDR) and document coverage. An overview is
given in Table 4.1.

Factor Attribute Description
Document Number of Defects Absolute number of defects in the document
 Size Document size
 Complexity Document complexity
Reviewer Experience Reviewer experience with reading technique,

document type…
 Expertise Reviewer domain expertise
 iDDR Individual defect detection rate of reviewer
 Document Coverage Percent of document covered by the reviewer

Table 4.1: Overview over model attributes

Biffl [Bif00] stated that experience and expertise influence the individual
defect detection rate of the reviewer. Furthermore, document properties
such as size and complexity also have an effect [BLW97]. The defect de-

4 Simulation Model Development

 52

tection ratios used for model calibration must be seen in combination with
the documents that were inspected and the set of reviewers that were avail-
able—these factors are not independent.

The development of the simulation model followed a method that is cur-
rently being developed [RNM03]. First, the goals pursued with the model
were defined. Then, a static process model was created that reflects the in-
spection process. This static model was used as the basis for the dynamic
simulation model. An influence diagram captured dynamic behavior and
interrelations. During this phase, empirical data from the experiments was
integrated iteratively. Then, the dynamic simulation model was built using
the simulation tool Extend and calibrated with data from the experiments.
To enable the model for multi-document runs, some extensions to input pa-
rameter and simulation handling were made. Finally, model limitations are
pointed out and lessons learned presented.

4.2 Modeling Goals

The primary goal is to develop an empirically-based simulation model that
allows for determining the effects of PBR and ad hoc requirements inspec-
tions in specific contexts. The intended usage of the model is decision sup-
port for planning software projects and tailoring the requirements inspec-
tion process to individual environments. This can be combined with other
decision support techniques as for example described in [RBH02]. Fur-
thermore, the model should help to reduce risks in introducing or changing
requirements inspection processes by better forecasting their impacts. Sev-
eral simulation models for inspections processes exist (e.g., [NHM+02],
[NHM+03]) that are mainly based on hypothetical assumptions or expert
knowledge.

The scientific focus was to better understand the use of quantitative em-
pirical knowledge for simulation model development. Therefore, the model
abstracts from several details and highlights the use of empirical data and
further results from empirical studies. Secondary goals comprise modeling
itself as well as the practical demonstration of the methodology presented
by Rus et al. [RNM03].

4.3 Analysis and Creation of the Static Process Model

Before modeling dynamic behavior, a static process model that reflects the
examined real-world process was developed. This can be done, for in-
stance, by descriptive software process modeling [BK01]. The static model
of the inspection process used is depicted in Figure 4.1. It is adopted from
the model of Münch et al. for requirements inspections instead of code in-
spections. The activities, products and roles are modeled according to
[LD00]. It is a well-known inspection process with individual preparation

4.4 Collection and Analysis of Empirical Data

 53

phases and a subsequent phase where individual defect lists are merged
into one. Software engineering literature provides various experiments and
studies where real team meetings are held and others where only nominal
teams are examined. An overview can be found in [LD00]. A nominal
team is a team that does not work together as a team, but individual defect
lists are simply merged. This means that no real team meetings take place.
There is no conclusive answer on whether team meetings enhance inspec-
tion results or not. The two replications of the original experiment that
were used in this work compared real team meetings against nominal
teams and found no increase in defect detection effectiveness. That is the
reason why only nominal teams were considered in the simulation model.

Figure 4.1: The inspection process model after [MBH+02]

4.4 Collection and Analysis of Empirical Data

The empirical knowledge used for developing the simulation model was
mainly gathered from the experiments described in [BGL+96] and
[CDLM97]. Throughout the rest of this thesis, the “original experiment”
refers to [BGL+96], and the “replications” refer to [CDLM97]. The object
of all experiments is a requirements document inspection process consist-
ing of an individual preparation phase and a phase where the individually
detected defects are pooled together. The initial experiment used profes-
sional software developers from the NASA/GSFC5 Software Engineering
Laboratory (SEL) as test subjects. They were tasked to review different
types of documents, one from the NASA domain and one generic in na-
ture, using their usual reading technique and the perspective-based reading
(PBR) technique. Due to time and costs constraints (the experimenters es-
timated at least $500 per subject and day), no real teams were formed. Af-
ter individual defect detection, the data gathered was pooled together ac-
cording to the nominal team approach. The original experiment was con-
ducted in two runs. After a pilot run, several changes to the documents and

5 National Aeronautics and Space Administration/Goddard Space Flight Center

4 Simulation Model Development

 54

the experimental settings were made. This is why only results from the
second run are considered here.

The replications took place one year later at the University of Kaiserslau-
tern. Since the subjects were all undergraduate students, only the generic
documents were used. These were identical to the ones used in the second
run of the original experiment. This time, PBR was compared to an ad-hoc
approach. Furthermore, the experimenters examined whether real teams
discovered more defects than nominal teams.

In both experiments, PBR proved to be superior to the other technique
used in almost all cases. Although no statistically significant effects could
be proven, the experimental data from the replication suggested that meet-
ings do not provide synergy effects: Although usually some new defects
were detected, there were a huge number of meeting losses (i.e., detected
defects that were not reported in real meetings).

Although the experiments were conducted to compare different reading
techniques, and data collection was driven by this purpose (as opposed to
developing and calibrating a simulation model), data like the average indi-
vidual defect detection rate or team defect detection rates could be used for
the development of the simulation model.

Data used for modeling included information about the individual defect
detection rate (iDDR) of each reviewer, document defect detection rate
(dDDR), defect detection overlap (how many defects are also detected by
other reviewers?) between reviewers, and document size and complexity.
To ease adoption of the model to different context, the relative importance
of reviewer experience and expertise can also be adjusted. Finally, docu-
ment coverage allows for the consideration of time pressure. Not all the
data that would have been helpful was collected during the real experi-
ments. They were designed to examine different reading techniques, but
not to support simulation model development.

When the real experiment is planned and conducted to (also) suit simula-
tion model development needs, all data considered necessary for the simu-
lation model can also be made available. This way, a good symbiosis of
real experiments and simulation can be achieved. This represents the pre-
ferred case, however, probably not the most likely. It can be expected that
most data stems from older experiments which were not designed to suit
simulation needs. Thus, the data that is to be included in the model must be
extracted from available data. While this may not be possible for all data,
this work proved that this approach works for a real context. There was,
however, no methodological support for deriving the data needed from the
data available.

4.5 Creation of the Influence Diagram

 55

4.5 Creation of the Influence Diagram

An analysis of the data provided by the experiments revealed a relationship
among individual defect detection rate (iDDR), team defect detection rate
(DDR) and reviewer know-how. The defect detection rate is defined as the
percentage of the defects found with respect to all defects (Equation 1).

iDDR indicates the individual performance of every reviewer, DDR speci-
fies team performance for one document with doubles sorted out. The ex-
periments confirmed that DDR rises with iDDR, while iDDR was higher
with professional software developers than with undergraduate students.

The description of the real experiments provided further information: The
number of defects in the inspection documents was known (27/29) as well
as the document size in pages (16/17). This results in an average of about
1.7 defects per page. Additionally, document complexity can be deter-
mined, since the documents are publicly available. A possible measure
could be McCabe's cyclomatic complexity measure [McC76]. On the re-
viewer side, some attributes are also known. The original experiment used
professional software developers as opposed to undergraduate students in
the replication. While the number of years of experience did not correlate
to inspection performance, the professionals yielded significantly higher
average iDDR scores than the undergraduate students (28.39% versus
21.08%, which is a 34.68% increase).

The model is based on average defect detection ratios; all other context in-
formation is normalized. This corresponds to the experiments, which also
concentrate on average DDR scores. As can be seen in the influence dia-
gram (Figure 4.2), iDDR values are derived directly or indirectly from the
context variables. Thus, by focusing on defect detection ratios, simulation
complexity could be decreased while at the same time the context was not
neglected.

Figure 4.2 includes literature references for positive or negative correla-
tions in the influence diagram. References named as [A] describe relations
I introduced to structure the model. This concerns primarily the intermedi-
ate attributes Document Difficulty, EE Level (i.e., experience and expertise
level) and Inspector Capability. Basili et al. [BGL+96] found that the
document reviewed significantly influences individual defect detection ra-
tios in the generic problem domain. Biffl [Bif00] found in his experiment
that inspector's experience as well as expertise as defined in Section 4.7.2
significantly influence inspection performance. Rising document difficulty
lowers the inspector's defect detection ability for the specific document

4 Simulation Model Development

 56

[BGL+96], while rising experience and expertise also rises inspector capa-
bility [Bif00]: The better qualified an inspector is for the document to be
inspected, the higher his individual defect detection rate can be expected.

Another correctional factor (iDDR Correction Factor) needed to be intro-
duced for the calculation of the document DDR. This factor symbolizes the
overlap of iDDR values combined for one document. Depending on the
reading technique, the defects found by each individual reviewer may
overlap more or less due to restrictions resulting from the chosen reading
technique. A PBR technique focusing on certain defect classes for each re-
viewer is more likely to yield a lower overlap than an ad-hoc technique,
where every reviewer scans the complete document for any defects.

For the immediate model purpose, the variables describing the context
(i.e., inspector experience and document complexity) were not mandatory,
since the context is already reflected in the iDDR values. An adaptation of
the model to new situations could then be done by adjusting the individual
defect detection ratio, of course, but this value can then again only be de-
termined in costly real experiments, thereby contradicting part of the mod-
eling goal. This is why the context variables were included in the model,
but with neutral behavior. Their potential influence is not impaired by this;
they are just set to values that do not influence input iDDR values. To
adapt the model to different contexts, the context variable values can be al-
tered accordingly, with this model and its experiments as a reference value.

Document Size

Experience

Document Complexity

EE Level

Expertise iDDR Correction Factor

Document Difficulty

Inspector Capability iDDR Total DDR

+ [A]

+ [BGL+96] - [BGL+96]

+ [Bif00]
+ [A]

+ [A]

+ [A]

+ [Bif00] + [BGL+96,CDLM97]

Figure 4.2: The influence diagram for the simulation model

4.6 The Dynamic Model

As a first step towards modeling the influence diagram, variables that were
used in the real experiments to capture real-world behavior were modeled
(see Figure 4.2). Document Difficulty, Inspector Capability and EE Level
are additional intermediate attributes defined in order to understand and
describe dynamic behavior. They are not reflected in the final model as
discrete blocks, but combined into some (more comprehensive) equations.
Their influence remained the same, but the combination reduced the num-

4.7 Model Attributes

 57

ber of blocks and connections in the model implementation significantly,
thereby enhancing readability.

First, the attributes included in the final model will be introduced. These
are attributes found to have a major influence on inspection results. Scales
to measure these attributes are provided, in order to alter their values and
thereby adapt the model to new contexts. There are other scales that can be
used, of course. In any case, it is possible to adapt the model to various
concrete measures.

4.7 Model Attributes

A key element of modeling is choosing attributes to be included in the
model. It should be examined very carefully which attributes of the real
world need to be modeled to adequately represent reality, and which can
be left out to reduce complexity without altering model behavior too much.
The attributes chosen for this model are depicted in Table 4.1 and will be
explained further here.

4.7.1 Document Attributes

Document attributes characterize the document that is to be inspected.
Thus, their values may differ with every document.

Number of Defects (1..n)

The number of defects in the document influences the number of detected
defects. In a defect-free document, no real defects can be detected, if any,
only false positives can be expected. A false positive is a reported defect in
an actually correct part of the document. With an increasing number of de-
fects, the number of actually detected defects can also be assumed to rise.
A natural limit can be expected at the point where the inspected document
contains so many errors that no sensible defect detection can be done any
more due to the fact that it gets difficult to identify defects at all. If this is
the case, a document should be rejected, since it is not yet ready to be sen-
sibly inspected. In this model, the number of defects is needed to model
the effect of the inspection in terms of defect reduction. As mentioned ear-
lier, the original experiments used documents with a defect density of
about 1.7 defects per page.

Document Size (0..2)

The document size influences the inspection in at least two ways. First, the
bigger the document gets, the more time is needed to read it and perform
the defect detection. Second, with growing document size it becomes in-

4 Simulation Model Development

 58

creasingly difficult to understand it completely, thus impeding defect de-
tection [BLW97]. Since in different domains very different document sizes
occur, it did not seem sensible to use an absolute number here. Instead, a
relative scale is used, with 1 symbolizing an average document size (aver-
age for the domain, company and review team). Numbers below 1 mean
that the document is smaller than usual, while numbers above 1 mean an
unusually big document. The 1 in our model represents our reference
document with 17 pages. Document size cannot only be measured by the
number of pages, of course. While this might make sense for requirements
documents, the size of code documents could be measured in LOC, for ex-
ample.

Document Complexity (0..2)

Document complexity influences defect detection in that it may be very
difficult to understand the document itself and therefore to find any defects
at all [BLW97]—on the other hand, a complex document may lead to more
false positives than a very simple one. Thus, document complexity is a key
attribute in the model. For quantifying this influence, the same considera-
tions as for the document size apply: In different domains, very different
document complexities may appear. Therefore, the same relative scale as
for document size has been chosen, with 1 symbolizing average complex-
ity and numbers below and above symbolizing lower and higher complex-
ity than usual. In order to use the simulation model in different contexts,
comparing document complexities, e.g., using McCabe's cyclomatic com-
plexity measure [McC76] seems plausible.

4.7.2 Reviewer Attributes

Reviewer attributes characterize the reviewers. Each reviewer has different
capabilities, which must be taken into account. Reviewer attributes typi-
cally change only slowly over time, e.g., with growing domain knowledge.
The model parameters, however, need to be adjusted for each different set
of reviewers.

Experience (0..2)

Experience symbolizes the reviewer's experience with inspections, the
document type, and the reading technique chosen. It is assumed that this
also influences inspection performance. A reviewer using a new reading
technique may need more time for administrative tasks than a more experi-
enced reviewer. An uncommon document type may lead to confusion,
lowering the defect detection ratio. Finally, the reading technique also in-
fluences inspection effects. For simplicity, experience is measured on a
relative scale with 1 symbolizing average experience (in the respective

4.7 Model Attributes

 59

context), and values below and above symbolizing lower and higher ex-
perience.

Expertise (0..2)

Expertise takes into account the domain knowledge of the reviewer. While
this might not be very important for some defect types, it may become ab-
solutely necessary when regarding core system functions. When there are
only reviewers foreign to the application domain, critical defects may go
unnoticed until late in the development process. Thus, it is expected that
domain knowledge also influences defect detection. Since the same scale
problems as with experience apply to expertise as well, the same relative
scale is used here.

Document Coverage (0..1)

This symbolizes how much of the document can be covered by the re-
viewer in the allocated inspection time. Time pressure, for instance, can be
expressed through this value. The values can be seen as percentage values.
Normally, document coverage should be 1, but when time pressure inhibits
a thorough inspection, the value can be lowered accordingly.

Individual Defect Detection Rate (0..1)

This depicts the defect detection rate of every individual reviewer. Mostly,
more than one reviewer will participate in an inspection. Thus, different
individual defect detection rates must be considered. If the reviewer's ca-
pabilities are well-known, this value can be set accordingly. If only group
performance has been monitored so far, mean and standard deviation val-
ues may be introduced at this point. The model presented in this work was
calibrated using mean and standard deviation values for individual defect
detection rates.

4.7.3 Additional Adjustment Variables

These additional adjustment variables are deemed necessary to better de-
scribe the context of the inspection. When using a specific review tech-
nique, for example, experience with this specific technique may be more
important than domain knowledge [Bif00]. This is reflected in the simula-
tion model through adjustment variables. If no special focus lies on one or
more variables, all adjustment variables except for the review correction
factor are set to 1. Lowering or raising a value increases or decreases the
weighing of the corresponding factor relative to the other factors. This en-
ables the simulation model user to put special emphasis on single factors.
Defect detection overlap ranges from 0 to 1.

4 Simulation Model Development

 60

Experience Importance

This describes the importance of experience as defined in the sec-
tion “Experience”. Experience may be especially important in special in-
spection processes with tailored reading techniques or special document
types.

Expertise Importance

If the software focuses on very special application domains such as avia-
tion or weapons systems, expertise may become relatively more important
than the other factors. This situation can be reflected through this value.

Review Correction Factor (0..1)

The review correction factor symbolizes the overlap of detected defects of
the individual reviewers. Thus, it can change with the reading technique.
An ad-hoc approach would have a high overlap since no special focus is
given on where or how to detect defects. A perspective-based approach
would have a lower overlap. Altering this value could become necessary,
for instance, if individual defect detection performance for a certain read-
ing technique is known, but the search fields are redefined. If the new
search fields supposedly overlap less, this value could be increased to re-
flect this context change in the model.

4.8 The Simulation Model

The simulation model is described in two steps. First, the model basics are
explained. That includes the realization of the attributes described above,
the calculation of various values and general document and reviewer flow.
In this stage, the inspection of only one document with one group of re-
viewers is modeled. In a second step, the model is extended to allow for
the simulation of an arbitrary number of documents, each with a different
set of reviewers, in one simulation run. This is described in Section 4.10.

The model is realized as a discrete event model using the modeling and
simulation environment Extend [Kra00]. The document is generated with
its properties, and a set of reviewers is generated with their properties.
Then their individual defect detection rates (iDDR) are combined into the
total defect detection rate of the (nominal) team for the respective docu-
ment (dDDR). To illustrate the effects, the number of defects remaining in
the document is calculated. An overview over the complete model is given
in Figure 4.3.

4.8 The Simulation Model

 61

3V 1 2
Reviewer

Set A(5)

iDDR
DOC Coverage

Expertise
Experience

Reviewer Props

3V 1 2
Document

Set A(5)

Complexity
Size

Defects

Doc Props

A
∆

Get

Get Defects

A
∆

Get

Get Size

A
∆

Get

Get DOC Coverag

A
∆

Get

Get Complexity

A
∆

Get

Get Experience

A
∆

Get

Get Expertise

Eqn

iDDR

A

Set A

Set iDDR

get
C

RS want
Total DDR

A
∆

Get

iDDR

Get iDDR

Count

#r

C

3

0,64

RevCor

A

Set A

Defects

Eqn

EE Level

D

T U

yt

Experience

#
Exit
(4)

4

A
∆

Get

Get iDDR

1

Expr importance

1

Expt importance

yt

Expertise

row

File
Out

Results File

T

yt

DOC Coverage

0

Eqn

Eqn

Remaining DEFEqn

iDDR Correction

1 2 3

Rand

iDDR

Figure 4.3: The Extend simulation model

The equation block labeled iDDR outputs the individual defect detection
rate of the reviewer adjusted to the actual process context. It uses the at-
tributes depicted in Figure 4.2 and the reviewer iDDR as input parameters.
In this instantiation of the model, input iDDR equals the block output, be-
cause the context is already reflected in the input iDDR. In order to adapt
the model to different contexts, experience and expertise can be adjusted
relative to each other. If an inspection requires intimate domain knowl-
edge, the importance of that factor can be raised compared to reviewer ex-
perience with the reading technique, for instance. Furthermore, individual
experience, expertise and document coverage levels can be altered. This
can be useful if defect detection rate data is available for groups of people,
but not for individuals. Also, individual improvements can be reflected
through these values.

The equation block labeled iDDR Correction takes care of the fact that not
all defects detected by an individual are really new defects. Some have al-
ready been found by others, some not. Since the model is based on average
defect detection rates, the individual detection rates are decreased with an
increasing number of reviewers. This yields a potential problem if the
group of reviewers is very inhomogeneous. If all reviewers perform about
the same, it does not matter which one comes first and which one last. If
there are major differences in defect detection ratio, their starting in the
model determines the simulation results. To eliminate this threat, several
simulation runs with random starting numbers of the reviewers should be
conducted and the results then averaged.

4 Simulation Model Development

 62

At a certain point, adding more reviewers does not lead to any more de-
fects discovered. Although the number of reviewers needed to reach that
point has not been provided by the real experiments, a constraint is in-
cluded in the model that discards individual defect detection success if the
(calculated) number of detected defects is smaller than one. After this
check, the final adjusted defect detection rates are totaled up into the
document defect detection rate (dDDR). For illustration purposes, the re-
maining defects are calculated last.

A simulation run consists of the following steps: At simulation time 0, the
document is created and its properties are set. In this work, defects were
set to the number of defects in the reference document, while size and
complexity were set to 1 in order not to spoil simulation results. The Get
modules read out their respective values and provide them as an input to
the defect detection rate calculation modules. Then the document is halted
for the time the reviewers need to pass through the simulation.

At simulation time 1, the first reviewer is created. The counter is needed to
decrease the number of newly detected defects for later reviewers. Re-
viewer properties are set during reviewer creation, analog to document
creation. Experience and expertise are set to 1, again not to spoil simula-
tion results. Throughout this work, a document coverage of 100% was as-
sumed, so the corresponding value remains 1 throughout the simulation.
Finally, iDDR gets set to values from a random number generator initial-
ized with mean values from the reference experiments and a modest stan-
dard deviation of five percentage points of iDDR. This ensures that the
simulation outputs a range of results in consecutive runs, so that mean re-
sults and typical variation can be identified. Experience and expertise im-
portance were both set to 1, thus not preferring any of the two factors.

Following the setting of the reviewer properties, they are read again and
used as inputs to various equations. The EE Level equation block adjusts
the relative value of expertise and importance (Equation 2).

4.9 Model Calibration

 63

This result is combined with document size, complexity and coverage to an
adjusted iDDR, which is then written back to the reviewer (Equation 3).

These equations represent the corresponding parts of the influence dia-
gram. The reviewer then leaves the simulation. At simulation time 2, the
next reviewer enters the simulation and passes through the explained
stages. This is repeated until all reviewers have passed through the simula-
tion. Finally, the document is released, the number of remaining defects is
written back into the document, and the document exits the simulation,
which stops the simulation run. All results are written to a file to simplify
multiple runs and the analysis of the results.

Simply adding up the iDDR values calculated in this manner would, of
course, lead to extremely high document defect detection rates, which
could easily exceed 100%. Therefore, individual defect detection rates for
later reviewers are adjusted. This adjustment is calculated in the iDDR
Correction equation. Determining this equation proved to be the hardest
part of the modeling process. The original experiments did not provide de-
tailed data about individual defect detection overlap. The only available in-
formation said that about 60% of the defects were found by more than one
reviewer when using PBR, with a tendency to higher values when using
ad-hoc techniques. This is not surprising, since PBR techniques try to
overlap search fields only partially. While this did not give clear advice on
how to decrease iDDR ratios for consecutive reviewers, it at least provided
a general direction for defining a correctional factor. The equation was fi-
nally determined during model calibration by using data from the real ex-
periments.

4.9 Model Calibration

In order to determine model behavior and to calibrate the model, empirical
data from the original experiments [BGL+96, CDLM97] was integrated.
This is described in the following. The experiments were not designed to
support simulation models. They were conducted to compare different
reading techniques. Therefore, some points of special interest will be
dwelled on in this section.

The two main data sources were the average individual defect detection
rate (iDDR) and the average nominal team defect detection rate for the
complete document (dDDR). From the data published, standard deviations
from the mean values could also be extracted. The original standard devia-
tion values were not used for model calibration, though. They were up to

4 Simulation Model Development

 64

twice as high as the absolute iDDR values measured. Using these standard
deviations in our model created reviewer iDDR values that were too unsta-
ble for sensibly calibrating the model. Therefore, a standard deviation of
five percent points of iDDR was used for calibration. In a real-world appli-
cation of the model, however, realistic values should be used whenever
available. This could become especially important when worst case/best
case inspection scenarios are to be evaluated. The value for the standard
deviation used directly influences lowest and highest iDDR values. The
values gathered in the real experiments are displayed in Table 4.2.

Value
Pilot
usual

Pilot
PBR

1995
usual

1995
PBR

Rep95
ad-hoc

Rep95
PBR

Rep96
ad-hoc

Rep96
PBR

avg. dDDR (%) 44,3 62,9 48,2 62,4 41,9 52,75 32,2 47,7
avg. iDDR (%) 20,58 24,92 24,64 32,14 21,33 25,93 14,59 22,46
avg. standard deviation (defects) 8,01 8,01 4,5 4,5 8,98 8,98 7,98 7,98
avg. dDDR - 2*iDDR (%) 3,14 13,06 -1,08 -1,88 -0,76 0,89 3,02 2,78

Table 4.2: Experiment values

Data from the 1995 run of the initial experiment and the two replications
only was integrated into the model. After the pilot run of the initial ex-
periment, the experimenters changed the context of the experiment. For
example, they changed the time granted for defect detection and the place
where the experiment took place (normal workplace → classroom setting).
Because of this, the results of the initial and the other runs cannot be com-
pared directly and, therefore, cannot be used for model calibration. Never-
theless, there were three sets of empirical data available to calibrate the
simulation model. Throughout the rest of this work, “experimental data”
refers to these three data sets.

When examining the data, it can be noticed that no matter which reading
technique was used, the average dDDR was always about twice the aver-
age iDDR (Table 4.2). The highest deviation was 3.02 percentage points,
with an average of 1.74. I do not believe this to be coincidence, so I used
this fact for model calibration.

No isolated defects were modeled. The model relied on average values for
defect detection. This is because of two factors: First, it reduced model
complexity. Second, there was no complete data available from all three
experiment runs concerning individual defects. Model calibration would
have to be done with fewer data, which seemed worse than using average
values.

The drawback was that relying on average values made it more difficult to
determine overlap in defect detection. “Overlap” means defects that were
detected by more than one reviewer. They increase individual DDR, but
not overall document DDR. When not examining single defects, there is no
possibility to determine how many of the defects one team member de-

4.10 Model Extensions

 65

tected were already detected by others. There was, however, general in-
formation about how many of the total defects detected were found by how
many persons. This at least indicated where to look for a correctional fac-
tor. A value was then determined for the data sets through systematic
simulation runs with different correctional factors.

An exponential decrease in the defect detection ratio was used. In this sce-
nario, the first reviewer’s iDDR is added fully to the total DDR, while the
following iDDRs are decreased by a factor determined by the number of
the respective reviewer and a review correction factor (RevCor). The ac-
tual iDDR that is added to the dDDR is calculated according to Equation 4.

where Count equals the number of the respective reviewer minus one.
When systematically testing the model with different RevCor values, a
value around 0.64 showed the lowest average deviation between the real
experiments and the simulation results (see Figure 4.4).

Mean deviation Simulation - Experiment

0
2
4
6
8

10
12
14
16

RevCor

M
ea

n
De

vi
at

io
n

[%
DD

R]

w/ Pilot
w/o Pilot

w/ Pilot 13,349 13,763 8,7463 4,4388 3,4613 3,3075 3,8563 2,6763 3,5813 4,55 7,795 8,3988

w/o Pilot 11,833 11,92 7,0683 2,4967 2,2333 1,945 2,605 2,2567 2,785 4,3733 9,1817 9,5417

0,3 0,4 0,5 0,6 0,63 0,64 0,65 0,65 0,66 0,7 0,8 0,9

Figure 4.4: Deviation Experiments – Simulation

This can only be a first calibration, of course. More data from other ex-
periments is needed to determine the validity of the equations used and the
RevCor factor.

4.10 Model Extensions

After the initial model was developed and calibrated, it was extended to
comprise a less abstract inspection process: Only few inspections consist
only of one document examined by one group of reviewers. Usually, more
than one document is inspected. While this could be emulated with multi-
ple runs of the simulation, it seemed not very comfortable. All input vari-

4 Simulation Model Development

 66

ables would have had to be set according to the new document/reviewers
combination for every run, thus not allowing first setting all parameters,
and then running the simulation unattended.

Because of this, an extended version of the model was developed. It com-
pletely contained the initial version in that it uses the same document and
reviewer flow and calculates the values of all variables similarly. The
changes allow for the simulation of multi-document inspections in one
simulation run. Also, the reviewers’ iDDR values are read from a file. This
way, each reviewer’s iDDR can be set individually. As in the basic ver-
sion, all results are written to a file. The complete model is depicted in
Figure 4.5.

count

event

start
V

Reviewers
A

Set A

Set iDDR

A
∆

Get

Get Defects

A
∆

Get

Get Size

A
∆

Get

Get DOC Coverag

A
∆

Get

Get Complexity

A
∆

Get

Get Experience

A
∆

Get

Get Expertise

Eqn

iDDR

A

Set A

Set iDDR

D

T U

DOC DDR Reset

get
C

RS want
DOC DDR

A
∆

Get

Get iDDR

Count

#r

C

iDDR Exponent

A

Set A

Set DOC DDR

4

Hold DOC

A

Set A

Set DOC Defects

Eqn

EE Level

D

T U

Hold DOC

#
Exit
(4)

A
∆

Get

Get iDDR

start
V

Documents

Count

#r

C

iDDR Selector

row

File
Out

Results File

T

0

Eqn

Format Output

row

File
In

iDDR Input

Eqn

Remaining DEFEqn

iDDR Correction

Info

Figure 4.5: The complete simulation model

4.10.1 Multiple Documents

Document generation now is realized as a Documents program block gen-
erating document items at predefined points in time. In order to achieve a
valid (i.e., each document is inspected by the correct number of reviewers)
model output, document items should be created in intervals depending on
the number of reviewers. To get an easily readable output value plot, an
offset of maximum number of reviewers per document + 2 is recom-
mended. For example, if the maximum number of reviewers per document
is 3 and the first document is created at simulation time 0, the subsequent
documents would be created at simulation times 5, 10, 15,…

The Program block also provides means to immediately set item attributes.
This was used to set the values of Defects, Size and Complexity right at

4.10 Model Extensions

 67

document creation. This allows for pre-determining all documents with
their parameters and then importing the data in one step into the model, in-
stead of setting various parameters in various places.

4.10.2 Multiple Reviewer Groups

Each document can be inspected by an arbitrary number of reviewers. This
was modeled using a Reviewers program block. The reviewers start one
time unit after their respective document. The iDDR values are read from a
file. Due to the backward integration function of the DOC DDR summa-
tion block, a dummy reviewer having an iDDR of zero must run through
the simulation after the last real reviewer. This must be considered when
creating the reviewer and iDDR input data. Experience, Expertise and
Document Coverage are set in the program block. It is recommended to set
these values to zero for the dummy reviewer, to better visualize the dis-
junction of the reviewer groups. However, other values do not influence
the simulation results.

The iDDR Input file needs to be composed the following way. Each re-
viewer’s iDDR, RevCor, EcIm and EtIm values stand tab-separated in a
row. Reviewer groups (=documents) are separated by a row containing
four tab-separated zeros. Because the RevCor factor depends on the in-
spection technique, it is likely to remain constant within reviewer groups,
but possibly changes between documents. This would be the case when
groups of reviewers use different reading techniques on their respective
documents. Experience and Expertise Importance values probably also
change only between documents. Nevertheless, the simulation model al-
lows for per-reviewer settings.

The iDDR Selector counter selects the row that is to be used from the input
file. The zero values are assigned to the dummy reviewers. This way, they
do not influence simulation results while the final document DDR is
summed and then written back to the document.

4.10.3 Miscellaneous Changes

Some minor changes were required by the multi-document, multi-reviewer
inspections. A DOC DDR Reset block is waiting for a document to pass.
When a document passes this block, the DOC DDR tank and the iDDR Ex-
ponent blocks are reset to zero. This clears the way for a new document.

The document that is being inspected needs to be held back for the time
the reviewers are running through the simulation. This is done by the Hold
DOC block. Unfortunately, the holding time cannot be calculated auto-
matically. This would require knowledge about the number of reviewers
planned for each document. To simplify model usage, a single holding

4 Simulation Model Development

 68

time that is valid for all documents is defined. Corresponding with the
document item offset, a value of maximum number of reviewers per docu-
ment + 1 is recommended. This ensures that documents and corresponding
reviewers are correctly paired.

After the document DDR is calculated, the document is released. The val-
ues for document DDR and remaining defects are written into the docu-
ment item, which exits the simulation after that.

4.11 Overview of Used Empirical Knowledge

This section gives an overview of the empirical knowledge used for simu-
lation model development, calibration and validation. It is intended as a
hint for developing similar models and to provide a better traceability be-
tween empirical data and simulation model. The key question is: Which
type of data was integrated at which point during development? Table 4.3
gives an overview over used empirical knowledge. The modeling stages
follow the methodology by Rus et al. [RNM03].

4.11 Overview of Used Empirical Knowledge

 69

Modeling Stage Data Source Usage
Static Process
Model Creation

[LD00,
MBH+02]

Both sources did not provide empirical data.
They were used for creating a static process
model that represents a well-known inspec-
tion process. (→ Section 4.3)

[Arm02] This source provided qualitative information
on which factors influence inspections.

[BGL+96,
CDLM97]

These two sources provided the reference
data for the relations between iDDR and
dDDR as well as general context informa-
tion.

[Bif00] This source provided information about the
influence of experience and expertise on the
iDDR values as well as the possible need to
change their relative importance.

Influence Diagram
Creation

[BLW97] This source provided information about the
influence of document size and complexity
on the iDDR values. (→ Section 4.5)

Dynamic Model
Creation

[BGL+96,
CDLM97,
Bif00,
BLW97]

The same data sources as during the crea-
tion of the influence diagram were used,
because the dynamic model represents the
influence diagram translated into the model-
ing environment. (→ Sections 4.6, 4.7, 4.8)

Model Calibration [BGL+96,
CDLM97]

The quantitative relations between iDDR
and dDDR were derived from these real
experiments. Determining the value of
RevCor and the exponential decrease in
iDDR weighing was also done comparing
simulation results with these sources. The
data was used to determine model equa-
tions and as input data for calibration. (→
Section 4.9)

Model Validation [BG01] This source provided empirical data with a
slightly different context, so the model could
be validated. The data was used as input
data for the simulation and for comparing
simulation results. (→ Chapter 6)

Table 4.3: Overview over used empirical knowledge

4 Simulation Model Development

 70

4.12 Model Limitations

The simulation model has several limitations. It describes a very abstract
inspection process and includes only few factors. A standard inspection
process is influenced by far more factors [Arm02]. Most of them are not
taken into account in this model.

This initial version of the model relies on average defect detection ratios
only. While this seems to work fine for homogenous groups of reviewers,
problems arise when reviewers with very different iDDRs are combined.
With this approach for adjusting each reviewer’s iDDR, the result may de-
pend on the time each reviewer starts. By repeatedly running the simula-
tion with randomized starting times of the reviewers, an acceptable aver-
age simulation result should be reached nevertheless.

A third limitation concerns the iDDR Correction equation. It is based
mainly on data from the three simulated experiments, testing and intuition.
It needs to be evaluated in other contexts, with more and less reviewers,
and with different iDDR values. It served the purpose well in this model,
but may need to be altered or replaced for other experiments.

The adjustment variables’ influence is largely unknown as well. At the
moment, all factors are included in the equations in a linear manner. This
raises questions like “With iDDR data available for a certain document
size, will iDDR decrease in a linear way with increasing document size?”
These questions will need to be answered in order to allow a reasonable
and reliable scale-up.

Finally, the model was calibrated using data from three (similar) experi-
ments only. Although the model performed well in a first validation with
real-world data (see Chapter 6), all equations, correction factors, and as-
sumptions of this model need to be cross-checked in order to come to a
more generally usable simulation model.

4.13 Lessons learned

I have learned several important things with respect to using empirical
knowledge during the creation of this model. A lot of information that
would have been helpful for creating the simulation model was not avail-
able. This was not because it is difficult to gather it, but because I used
data from experiments not designed to fit the needs of a simulation model.
With only little more effort, the desired data could have been collected,
which would have simplified model building a great deal. This might be an
issue for the design of future experiments.

4.13 Lessons learned

 71

Furthermore, deriving valid equations from discrete data points as pro-
vided through experiments is also not an easy task. Especially the combi-
nation of the RevCor factor and the iDDR Correction equation proved to
be difficult. Unfortunately, the experiments themselves could not provide
much helpful information. This was not because of the experimental setup,
but because of the lack of determined interrelations between influence fac-
tors and the amount of different contexts. I tried to overcome this through
extensively testing out ideas, but I failed to provide a more systematic ap-
proach.

The empirical knowledge I used mainly resulted from one experiment and
two replications. Although this was considered in the design of the replica-
tions, the contexts were not completely identical. Additionally, I used em-
pirical knowledge from other empirical studies for identifying further im-
pact dependencies. The context of these studies was also different. It seems
to be a challenging research field to investigate to which extent context
variations are acceptable and what the consequences for the external valid-
ity of the model are (further details about threats to validity can be found
in [Kra00]). Guidance for this topic is missing. From my point of view, a
careful commonality analysis of the contexts could be a starting point.

Finally, using a visual modeling tool such as the one I used proved to be a
great help. Visualizing the model modules and their connections allowed
for effectively developing the model. A text- or source code-based model
would have been significantly harder to develop.

 73

5 Simulation Run

To simplify model usage in real-world environments, this sec-
tion exemplarily executes on complete simulation cycle. This includes
model setup, a simulation run and result identification. First, the simulation
model is set up with input data from the real experiments, and then the
simulation is run. The three original experiments (generic problem do-
main) are simulated. For simplification, the results of both documents are
combined as during model calibration. Finally, the results file is explained.
All input data described here can be found in Appendix A. This should
simplify replaying this exemplary simulation run as well as setting up
other simulations.

5.1 Scope of Validity of the Model

The simulation model describes a requirements inspection process. A
document is inspected by an arbitrary number of reviewers in a classroom
setting. Each reviewer works independently from the others. The results of
all reviewers are combined, but no real team meetings are held. The re-
viewers’ capability is reflected in their individual defect detection rate.
This means that if the individual defect detection rates are known, the
model can be used with arbitrarily capable reviewers, and if the defect de-
tection rates are unknown, assumed values can be used in combination
with adjusting other model variables. Model calibration and validation,
however, was done primarily with data from undergraduate students, so
caution is advised when simulating reviewers with a highly different back-
ground.

The simulation model assumes that there is sufficient time to thoroughly
conduct defect detection. Nevertheless, time pressure can be accounted for
through adjusting the document coverage value. The inspected documents
were from a generic domain, with 17 pages, each containing an average of
1.7 defects. Model validation suggests that a 50% increase in defect den-
sity and a 100% increase in document size do not impair model validity.

5.2 Simulation Model Preparation

First, the documents that will run through the simulation model need to be
defined. This is done in the Documents block. Since three reviewers are to
inspect each document, the maximum number of reviewers per document is
three. Following the recommendation from Section 4.10.1, documents start
at every 3+2=5 time units. The number of Defects is set to 28 as the aver-

5 Simulation Run

 74

age of the two documents, while Size and Complexity attribute values re-
main 1, because these document properties are already reflected in the re-
viewer iDDR values.

Next, reviewers need to be prepared. This is done in the Reviewers block
of the model. Every document is to be inspected by three reviewers. The
first reviewer of every group starts one time unit after the respective
document, with the others following one by one. Experience, Expertise and
DOC Coverage are set to 1, because these attributes are also already re-
flected in the reviewer iDDR values. After each set of reviewers, a re-
viewer with 0 for each of the three attribute values is scheduled, as ex-
plained in Section 4.10.2.

Finally, the iDDR Input values must be set. This is done directly in a text
file that is read at the beginning of the simulation. The first column of the
file contains values for each reviewer’s iDDR, the second the RevCor
value. The third and fourth columns contain the values for Experience and
Expertise Importance. Since only average values are available from the
real experiments, the iDDR values for the reviewers are identical within
groups. The data stems from the original experiments, so RevCor values
are constant here, too. The relative weighing of experience and expertise
remains equal because there is no special emphasis on either one. Sets of
reviewers are divided by a row with zeros for all values.

5.3 Simulation Results

After setting up all necessary model parameters, the simulation can be
started. The experiments were simulated in their timely appearance, which
is denoted in Table 4.2, for example. The documents exiting the simulation
contain information about the document DDR (dDDR) and the remaining
Defects. More detailed information is recorded by the Discrete Event Plot-
ter module (see Figure 5.1). The first column records reviewer iDDR val-
ues. The standard setting only records changed values. This is why only
six values are displayed at simulation times 1, 6, 11, 16, 21, and 26 (all re-
viewers within one group have the same iDDR values). At simulation
times 4, 9, 14, 19, 24, and 29, the zero values from the dummy reviewers
are recorded.

5.3 Simulation Results

 75

Figure 5.1: Simulation results plot

The second column is not used. The third column contains the values from
the DOC DDR holding tank at the respective times, separated by zeros
when the tank is reset for a new document. These values can also be found
in the SimulationResults.txt file, which is written by the File Out module.
Here, each simulation step results in a new row. The non-zero rows contain
the respective DOC DDR values from the third plotter column.

The fourth plotter column contains the values calculated for the number of
remaining defects in the document. The values are linked directly to the
DOC DDR values from the third column. Table 5.1 gives an overview over
simulation document DDR, remaining defects, (real-world) experiment
document DDR and the deviation of reality and simulation. The average
deviation between simulation results and reality is 1.99 percentage points
of DDR.

5 Simulation Run

 76

Simulation dDDR Remaining
Defects Experiment dDDR Reality - Simulation

50,5% 14 48,2% -2,3%
65,87% 10 62,4% -3,47%
43,72% 16 41,9% -1,82%
53,15% 13 52,75% -0,4%
29,89% 20 32,2% 2,31%
46,03% 15 47,7% 1,67%

Table 5.1: Simulation run results overview

 77

6 Validation

Since the model was developed to be used in a real-world environment, a
test of the model was needed. This is to verify the equations derived from
the calibration data and to evaluate model behavior under different circum-
stances. A good test data set would have similar context, but slightly
changed compared to the calibration data. [BG01] provides such a data set.

6.1 Simulation Model Preparation

As a first test in a different environment, the calibrated extended model
was tested with data from another real experiment [BG01]. The experiment
originally analyzed the influence of team size and defect detection tech-
nique on the inspection effectiveness of a nominal team. Valid data from
169 subjects could be collected. The subjects were all undergraduate stu-
dents with some software engineering experience. The experimenters dis-
tinguished subjects using a checklist-based approach (denoted with “C” for
the rest of this chapter), a scenario-based approach using the user view-
point (“A”), the designer viewpoint (“D”) and the tester viewpoint (“T”).
All experiment runs were preceded by appropriate trainings.

Since the focus of the experiment was on reading technique mixes and
team size, iDDR and team DDR data was only available for two-person
teams. This creates a good test for the calculation of the document DDR
value. The knowledge of the test subjects can be compared to the subjects
from the replications used for calibration, since both were undergraduate
students. In both cases, there was a classroom setting. The inspected
document was a requirements document as well. It was about twice as lar-
ge (35 compared to 16/17) as the calibration documents and contained
about three times as many defects (86 compared to 27/29). This makes for
an average of 2.46 defects per page, which is 45% higher than the calibra-
tion documents (1.7). So, there are context changes, but only slight ones so
the model may perform well in the changed context as well.

For testing purposes, only combinations of two reviewers using the same
reading technique were entered into the model. This should prevent spoil-
ing simulation results due to combining different reading techniques.
Translated into model parameters, this means that four equal documents
are inspected by two reviewers each: First AA (two “A” reviewers), then
TT, CC, and finally DD. All other parameters kept their original values,
including RevCor. The specific values of all simulation parameters can be
found in Appendix B.

6 Validation

 78

6.2 Simulation Results

After preparation, the simulation was run. Four documents were inspected
by two reviewers each. The results can again be found in the Simulation-
Results.txt file and, more detailed, in the Discrete Event Plotter module.

The simulation run resulted in document DDR values very close to the ex-
periment values. Table 6.1 gives an overview. The rows contain the values
for the AA, TT, CC, and DD reviewer groups. The average deviation be-
tween simulation results and reality is 1.1 percentage points of DDR,
which equals a maximum deviation of 3.3 percent. This is a very good re-
sult, suggesting that the simulation model indeed decently reflects reality.

Simulation dDDR Remaining
Defects Experiment dDDR Reality - Simulation

26,24% 63 27,0% 0,76%
24,11% 65 25,6% 1,49%
32,96% 58 33,5% 0,54%
24,11% 65 25,7% 1,59%

Table 6.1: Model validation results overview

 79

7 Conclusions

7.1 Summary

This work presented a discrete-event simulation model of an inspection
process. The model is based on empirical data from an inspection experi-
ment at the NASA/GSFC Software Engineering Laboratory and two repli-
cations at Kaiserslautern University. The experiments provided data about
average individual defect detection rates of the reviewers and average total
team defect detection rates. While the experiments examined both NASA-
specific and generic type documents, only the generic part was considered
for the model.

The simulation model reconstructs the inspection process in an abstract
form. Several adjustment variables allow for future adaptation of the
model to different contexts. The model itself is based on average defect de-
tection ratios.

The first chapter provided an introduction into this work. The second chap-
ter gave an overview about empirical software engineering and introduced
and structured different types of real and virtual experiments. The third
chapter explained the three main possibilities of combining real and virtual
software engineering experiments, and pointed out typical problems that
can be expected when doing so.

The fourth chapter implemented an exemplary simulation model using
empirical knowledge from real experiments. This was done following a
methodology proposed by Rus et al. [RNM03]. All modeling steps are ex-
plained in detail, as well as an extension to better support real-world appli-
cation of the model. Model limitations and lessons learned round off the
chapter. The fourth chapter serves as a guide to creating other models. Fi-
nally, an exemplary simulation run is described in the fifth chapter, with
detailed explanation of the steps necessary for setting up the model and in-
terpreting simulation results. Chapters six and seven provide a real-world
model test and an outlook to one possible usage of the model.

The model results lead to the conclusion that the model does represent re-
ality to a certain degree. Nevertheless, it should not be forgotten that many
details were abstracted from. Additionally, only three real experiments
were used as calibration data. However, the model performed well in a first
test with real-world data. It has become clear that integrating empirical
data into models is a feasible way to obtain good simulation models. Fur-
thermore, the methodology introduced by Rus et al. [RNM03] provides a

7 Conclusions

 80

systematic help for developing the model. Although the method is intended
for modeling larger processes from real-world businesses, the suggested
steps towards a model helped in systematically developing the model. Of
course, some steps were left out, e.g., customer interviews. Nevertheless,
the method proved to support modeling processes in practice.

It took about three person weeks to develop the simulation model, includ-
ing the initial calibration and the extensions for the multi-document, multi-
reviewer capabilities, with about one extra week for tool familiarization.
An arbitrary amount of time can be spent for further calibration with dif-
ferent data, of course. Up to now, no information is available on whether
the model will pay off, and how many real experiments need to be replaced
by simulations until break-even. This is also closely related to the reliabil-
ity of the simulation results.

Using empirical knowledge during simulation model development pro-
vided several advantages. While the static model can be developed using
expert knowledge, determining the quantitative relations seems rather dif-
ficult without real-world data. Using the same analogy as in Section 3.2.5,
the static process model is the black-and-white photograph, whereas the
empirically enriched dynamic model represents the color video. The same
advantages apply for calibration and model adaptation: When the process
context changes, e.g., because other employees are conducting the inspec-
tion, this change can easily be reflected in the simulation model through
varied input parameters. An example for this is given in Chapter 6. Finally,
the incremental approach is supported well, too. The first raw version of
the model presented in this thesis was developed using empirical knowl-
edge from the original experiments only. When relations had gotten
clearer, more data from the other experiments was included to refine the
model. Ultimately, this approach led to the multi-document, multi-
reviewer simulation model.

Several problems appeared during modeling and integration of empirical
knowledge. The original experiments did not provide all the data that
would have been helpful for the model. Also, deriving valid equations
from discrete data points is not an easy task and requires extensive explor-
ative studies.

7.2 Further Usage of the Simulation Model

As already mentioned earlier, simulations can be used to evaluate (slight)
context changes in experiments. One experiment may provide data for a
certain context, another one for a slightly different context. Using simula-
tion technology, these two isolated spots may be expanded and combined
into a larger field where certain predictions can be made through simula-
tions.

7.2 Further Usage of the Simulation Model

 81

Figure 7.1 depicts this situation. Two real experiments supply information
about the areas denoted with “A”. Although this is certainly valuable in-
formation, it only concerns isolated spots in the much larger field of possi-
ble effects. Now, through replicating each isolated real experiment using
simulation, these areas may be expanded and enlarged through slight varia-
tion of simulation parameters. This could lead to decent knowledge about
the “B” areas. Since it has not been gained through real experiments, it is
only reliable to a certain degree. Determining this degree (“The statements
in area “B” are true with a probability of 0.8”) could be a field of future re-
search.

Combining several real experiments with simulations could lead to an even
larger area of understanding, denoted with “C” in Figure 7.1. Isolated data
bits could serve as simulation input to cover a larger area. Of course, the
degree of trust for the “C” area would probably be lower than for the “B”
areas. Nevertheless, there was at least some information for an area that
was completely uncharted before.

This is only one possible use of the combination of real experiments and
simulation. A lot of research is still necessary before a map like Figure 7.1
can be drawn quantitatively. Combining different maps into one single,
more comprehensive model of the software development process requires
further research. Nevertheless, the benefits seem promising, so this goal
should be pursued further.

C

Number of reviewers

Defect
density

1,7

2,5

2 3

A

A B

B

Figure 7.1: Expanding understanding of parameter change effects

7 Conclusions

 82

7.3 Outlook

A possible direction for future research concerning the model itself would
be the iDDR Correction/RevCor area. More data from different experi-
ments is needed to determine the validity of the proposals presented in this
work. Another important direction would be to explore the possibilities of
adapting the model to different contexts. Here, especially the integration of
the “adjustment variables” could be enhanced. Generally, more knowledge
about the quantitative relations of influence factors is needed.

Other open research questions concern better methodological support for
combining empirical data and simulation modeling. As an example, con-
trolled experiments could be designed specifically for simulator develop-
ment, for example. When conducting case studies, simulation support
could be improved by recording more context and individual data. This
could lead to a new and advanced type of experimental laboratory that uses
process simulation as a virtual capability.

Finally, determining the reliability of the results gained through simulation
as addressed in Section 7.2 is important for the usage of simulation results.
To what degree do they actually match reality, how much do they typically
differ? Questions like these need to be answered in order to take full ad-
vantage of the combination of real experiments and simulation, and to ana-
lyze the potential pay-off of the simulation model.

Acknowledgements

I would like to thank Jürgen Münch whose comments substantially im-
proved this work. I am also grateful for Andreina Byrd and Simone Wittke
reviewing this thesis.

List of figures

 84

List of figures

Figure 2.1: Variable types in experiments.. 13
Figure 2.2: Real and virtual laboratory approach based on [Hag03] .. 20
Figure 2.3: Relationships among model aspects after [KMR99] .. 25
Figure 2.4: Simplified software development process.. 31
Figure 2.5: Typical structure for process modeling tools.. 33
Figure 3.1: Virtual and real laboratories... 36
Figure 3.2: Possible timely arrangements of real and virtual experiments ... 37
Figure 3.3: Experimental point of interest .. 41
Figure 3.4: Online simulation principle... 44
Figure 4.1: The inspection process model after [MBH+02] .. 53
Figure 4.2: The influence diagram for the simulation model .. 56
Figure 4.3: The Extend simulation model .. 61
Figure 4.4: Deviation Experiments – Simulation .. 65
Figure 4.5: The complete simulation model ... 66
Figure 5.1: Simulation results plot.. 75
Figure 7.1: Expanding understanding of parameter change effects... 81

List of tables

 85

List of tables

Table 2.1: Classification by number of treatments and teams...11
Table 2.2: Characteristic factors for real experiments after [WSH+00] ...12
Table 2.3: Exemplary setup for a planned experiment sequence ...17
Table 3.1: Benefit overview...49
Table 4.1: Overview over model attributes..51
Table 4.2: Experiment values..64
Table 4.3: Overview over used empirical knowledge ..69
Table 5.1: Simulation run results overview..76
Table 6.1: Model validation results overview...78

Bibliography

 86

Bibliography

[1299] The Journal of Systems and Software – Special Issue on Process
Simulation Modeling, volume 46. Elsevier Science Inc., 1999.

[AHM91] Tarek Abdel-Hamid and Stuart E. Madnick. Software Project
Dynamics. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Arm02] Ove Armbrust. Developing a Characterization Scheme for Inspection
Experiments. Project Thesis, Kaiserslautern University, 2002.

[Bas92] Victor R. Basili. The Experimental Paradigm in Software
Engineering. In H. Dieter Rombach, Victor R. Basili, and R. W.
Selby, editors, Experimental Software Engineering Issues: A critical
assessment and future directions, 706, pages 3–12, September
1992.

[BCR94a] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach.
Experience Factory. In John J. Marciniak, editor, Encyclopedia of
Software Engineering, volume 1, pages 469–476, 1994.

[BCR94b] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. Goal
Question Metric Paradigm. In John J. Marciniak, editor, Encyclopedia
of Software Engineering, volume 1, pages 528–532, 1994.

[BG01] Stefan Biffl and Walter Gutjahr. Analyzing the Influence of Team Size
and Defect Detection Technique on the Inspection Effectiveness of a
Nominal Team. In Proceedings of the 7th International Software
Metric Symposium, April 2001.

[BGL+96] Victor R. Basili, Scott Green, Oliver Laitenberger, Filippo Lanubile,
Forrest Shull, Sivert Sørumgård, and Marvin V. Zelkowitz. The
Empirical Investigation of Perspective-based Reading. Empirical
Software Engineering, 1(2), pages 133–164, October 1996.

[Bif00] Stefan Biffl. Analysis of the Impact of Reading Technique and
Inspector Capability on Individual Inspection Performance. In
Proceedings of the 7th Asia Pacific Software Engineering
Conference (APSEC) Singapore, December 2000.

Bibliography

 87

[BK01] Ulrike Becker-Kornstaedt. Towards Systematic Knowledge Elicitation
for Descriptive Software Process Modeling. In F. Bomarius and
S. Komi-Sirviö, editors, Proceedings of the Third International
Conference on Product Focused Software Processes Improvement
(PROFES), 2188, pages 312–325. Lecture Notes in Computer
Science, September 2001.

[BLW97] Lionel C. Briand, Oliver Laitenberger, and Isabella Wieczorek.
Building Resource and Quality Management Models for Software
Inspections. Technical Report 97-06, Fraunhofer Institute for
Experimental Software Engineering, 1997.

[Bro95] Frederic P. Brooks. The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition. Addison-Wesley, 2nd edition,
1995.

[BSH86] Victor R. Basili, Richard W. Selby, and David H. Hutchens.
Experimentation in Software Engineering. IEEE Transactions on
Software Engineering, SE-12(7), pages 733–743, July 1986.

[BW84] Victor R. Basili and David M. Weiss. A Methodology for Collecting
Valid Software Engineering Data. IEEE Transactions on Software
Engineering, pages 728–738, November 1984.

[CDLM97] Marcus Ciolkowski, Christiane Differding, Oliver Laitenberger, and
Jürgen Münch. Empirical Investigation of Perspective-based
Reading: A Replicated Experiment. Technical Report 048.97/E,
Fraunhofer IESE, December 1997.

[Fag76] Michael E. Fagan. Design and Code Inspections to reduce Errors in
Program Development. IBM System Journal, 15(3), pages 182–211,
1976.

[Fli02] Rudolf Flierl. Verbrennungsmotoren. Lecture at Kaiserslautern
University, 2002.

[Hag03] Hans Hagen, editor. Virtuelle Laboratorien. Universität
Kaiserslautern, Fachbereich Informatik, Konzeptpapier für die
Einrichtung eines DFG-Sonderforschungsbereiches, 2003.

[Jos88] Mathai Joseph. Software engineering: Theory, Experiment, Practice
or Performance. Technical report, University of Warwick, 1988.

[KMR99] Marc I. Kellner, Raymond J. Madachay, and David M. Raffo.
Software Process Simulation Modeling: Why? What? How? The
Journal of Systems and Software, 46, pages 91–105, 1999.

Bibliography

 88

[Kra00] David Krahl. The Extend Simulation Environment. In J.A. Joines,
R. R. Barton, K. Kang, and P. A. Fishwick, editors, Proceedings of
the 2000 Winter Simulation Conference, pages 280–289. IEEE
Press, 2000.

[Lad94] Peter B. Ladkin. Report on the Accident to Airbus A320-211 Aircraft
in Warsaw, 1994. http://www.rvs.uni-bielefeld.de/publications/
Incidents/DOCS/ComAndRep/Warsaw/warsaw-report.html. Last
visited 2002-12-04.

[LD00] Oliver Laitenberger and Jean-Marc DeBaud. An Encompassing Life-
cycle Centric Survey of Software Inspection. Journal of Systems and
Software, 50(1), pages 5–31, 2000.

[Lur02] Marty Lurie. Winning Database Configurations: An IBM Informix
Database Survey. http://www7b.software.ibm.com/dmdd/zones/
informix/library/techarticle/lurie/0201lurie.html; Last visited: 2003-01-
21, January 2002.

[MBH+02] Jürgen Münch, Thomas Berlage, Thomas Hanne, Holger Neu,
Stefan Nickel, Sascha von Stockum, and Andreas Wirsen.
Simulation-based Evaluation and Improvement of Software
Development Processes. Technical Report SEV Progress Report
No. 1, Technical Report No. 048.02/E, Fraunhofer Institute for
Experimental Software Engineering, Kaiserslautern, Germany, 2002.

[McC76] Thomas McCabe. A Software Complexity Measure. IEEE
Transactions on Software Engineering, 2(4), pages 308–320, 1976.

[Mey02] Angela Meyer. Wer verdient wie viel? http://www.heise.de/ct/
02/06/110/; Last visited: 2003-01-21, February 2002.

[Mün02] Jürgen Münch. Process Modeling Tool Structure. Process Modeling
Lecture, Kaiserslautern University, 2002.

[MPSV96] Patricia McCarthy, Adam A. Porter, Harvey P. Siy, and Lawrence G.
Votta. An Experiment to Assess Cost-benefits of Inspection Meetings
and their Alternatives. In Proceedings of the International Metrics
Symposium, pages 123–134, 1996.

[MR00] Robert H. Martin and David A. Raffo. A Model of the Software
Development Process using both Continuous and Discrete Models.
International Journal of Software Process Improvement and Practice,
5(2/3), 2000.

Bibliography

 89

[Nav02] Emily O. Navarro. SimSE – An Educational Software Engineering
Simulation Environment, 2002. http://www.ics.uci.edu/emilyo/
SimSE/main.html. Last visited 2002-12-04.

[NHM+02] Holger Neu, Thomas Hanne, Jürgen Münch, Stefan Nickel, and
Andreas Wirsen. Simulation-based Risk Reduction for Planning
Inspections. In Markku Oivo and Seija Komi-Sirviö, editors,
Proceedings of the 4th International Conference on Product Focused
Software Process Improvement (Profes 2002), 2559, pages 78–93.
Lecture Notes in Computer Science, December 2002.

[NHM+03] Holger Neu, Thomas Hanne, Jürgen Münch, Stefan Nickel, and
Andreas Wirsen. Creating a Code Inspection Model for Simulation-
based Decision Support. In Proceedings of the International
Workshop on Software Process Simulation and Modeling
(ProSim), Portland, Oregon, USA, May 2003.

[oE94] United States Department of Energy. Human Radiation Experiments.
http://tis.eh.doe.gov/ohre/; Last visited 2003-01-21, 1994.

[Pfa01] Dietmar Pfahl. An Integrated Approach to Simulation-based Learning
in Support of Strategical and Project Management in Software
Organizations. PhD thesis, Kaiserslautern University, 2001.

[RBH02] Ioana Rus, Stefan Biffl, and Michael Halling. Systematically
Combining Process Simulation and Empirical Sata in Support of
Decision Analysis in Software Development. Technical report, SEKE,
2002.

[RBS93] H. Dieter Rombach, Victor R. Basili, and Richard W. Selby.
Experimental Software Engineering Issues: Critical Assessment and
Future Directions. Lecture Notes in Computer Science. Springer
Verlag, 1993.

[RKP+99] David Raffo, Timo Kaltio, Derek Partridge, Keith Phalp, and Juan F.
Ramil. Empirical Studies Applied to Software Process Models.
Empirical Software Engineering, 4(4), pages 353–369, December
1999.

[RNM03] Ioana Rus, Holger Neu, and Jürgen Münch. A Systematic
Methodology for Seveloping Discrete Event Simulation Models of
Software Development Processes. In Proceedings of the
International Workshop on Software Process Simulation and
Modeling (ProSim 2003), Portland, Oregon, USA, May 2003.

[Rom01] H. Dieter Rombach. Software Engineering 2. Lecture Notes,
Kaiserslautern University, 2001.

Bibliography

 90

[Som87] Ian Sommerville. Software Engineering. Addison-Wesley, 1987.

[Vot93] Lawrence G. Votta. Does Every Inspection Need a Meeting? In
Proceedings of the first ACM SIGSOFT Symposium on Foundations
of Software Engineering, pages 107–114, December 1993.

[WSH+00] Claes Wohlin, Per Suneson, Martin Höst, Magnus C. Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software
Engineering: An Introduction. Kluwer Academic Publishers, 2000.

Appendix A

 91

Appendix A: Simulation Run Data

Output time Defects Size Complexity
0 28 1 1
5 28 1 1
10 28 1 1
15 28 1 1
20 28 1 1
28 28 1 1

Table A-1: Documents input

Output time Experience Expertise DOC Coverage
1 1 1 1
2 1 1 1
3 1 1 1
4 0 0 0
5 1 1 1
6 1 1 1
7 1 1 1
8 0 0 0
10 1 1 1
11 1 1 1
12 1 1 1
13 0 0 0
15 1 1 1
16 1 1 1
17 1 1 1
18 0 0 0
20 1 1 1
21 1 1 1
22 1 1 1
23 0 0 0

Table A-2: Reviewers input

Appendix A

 92

iDDR RevCor EcIm EtIm
0,2464 0,64 1 1
0,2464 0,64 1 1
0,2464 0,64 1 1
0 0 0 0
0,3124 0,64 1 1
0,3124 0,64 1 1
0,3124 0,64 1 1
0 0 0 0
0,2133 0,64 1 1
0,2133 0,64 1 1
0,2133 0,64 1 1
0 0 0 0
0,2593 0,64 1 1
0,2593 0,64 1 1
0,2593 0,64 1 1
0 0 0 0
0,14585 0,64 1 1
0,14585 0,64 1 1
0,14585 0,64 1 1
0 0 0 0
0,2246 0,64 1 1
0,2246 0,64 1 1
0,2246 0,64 1 1
0 0 0 0

Table A-3: iDDR input

Appendix B

 93

Appendix B: Validation Data

Output time Defects Size Complexity
0 86 1 1
4 86 1 1
8 86 1 1
12 86 1 1

Table B-1: Documents input

Output time Experience Expertise DOC Coverage
1 1 1 1
2 1 1 1
3 0 0 0
5 1 1 1
6 1 1 1
7 0 0 0
9 1 1 1
10 1 1 1
11 0 0 0
13 1 1 1
14 1 1 1
15 0 0 0

Table B-2: Reviewers input

iDDR RevCor EcIm EtIm
0,16 0,64 1 1
0,16 0,64 1 1
0 0 0 0
0,147 0,64 1 1
0,147 0,64 1 1
0 0 0 0
0,201 0,64 1 1
0,201 0,64 1 1
0 0 0 0
0,147 0,64 1 1
0,147 0,64 1 1
0 0 0 0

Table B-3: iDDR input

Appendix C

 94

Appendix C: Terminology

Descriptive Process Model
A process model that is derived from the actual process. It describes the
current process as it is seen by the modeler.

DDR
Defect detection rate. The defect detection rate is defined as the percent-
age of the defects found with respect to all defects.

Experience Factory (EF)
The Experience Factory provides a methodological model for the storage
of knowledge gained, for example, in QIP circles. It contains an experi-
ment database and project databases. The experience database contains
process models, product models, project plans and other packaged infor-
mation. Each project database contains “raw” products and measurement
data. After project completion, this knowledge is analyzed, packaged and
added to the experience database.

Experiment
A test, trial or tentative procedure policy; an act or operation for the pur-
pose of discovering something unknown or of testing a principle, suppo-
sition, etc.; an operation carried out under controlled conditions in order
to discover an unknown effect or law, to test or establish a hypothesis, or
to illustrate a known law [Bas92].

iDDR
Individual defect detection rate. This describes the percentage of defects
that a reviewer detects of all defects in a document.

Model
Abstraction, usually a simplification, of a real or imaginary system. The
model represents only the aspects of the system deemed important for the
current purpose. In most cases, this is only a fraction of the actually ex-
isting aspects.

Object, Experimental
The object of interest that is to be investigated in the experiment.

Appendix C

 95

Process
Number of partially ordered steps to reach a goal. It may be refined into
sub-processes.

Prescriptive Process Model
A process model that provides a plan that determines the course of ac-
tion. A prescriptive process model is derived from theory and often sym-
bolizes the ideal process and therefore needs to be adapted to reality. Ex-
ample: The waterfall process model.

Subject, Experimental
Since software engineering is a human-based profession, humans need to
carry out the experiment tasks. In this context, they are called experimen-
tal subjects.

Treatment
Single experimental run with specifically set parameters.

QIP
The Quality Improvement Paradigm has been introduced in 1984
[BW84] as a result of the research effort of NASA SEL and the Univer-
sity of Maryland, Department of Computer Science. QIP supports sys-
tematic planning and executing processes as well as analyzing the results
and packaging the knowledge gained for reuse. QIP describes a methodo-
logical model for advanced learning in software organizations.

Research Domain
Well-defined science area where new insights are sought for by system-
atic effort. A number of research objects are identified by defining a re-
search domain. Example: Software Engineering.

Virtual Laboratory
Controlled environment for conducting virtual experiments in a research
domain. The (virtual) research object consists of a model of the real re-
search object.

Virtual Experiment
Experiment where the research object is recreated (modeled) and exam-
ined (simulated, visualized) in a computer environment.

