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ABSTRACT 

This thesis describes the combination of real experiments with software 
process simulation. It introduces different types of real experiments and 
simulations and describes three main possibilities of combining them: us-
ing empirical knowledge for simulation, using simulation for real experi-
ments, and online simulations. The first possibility is explored further by 
the systematical development and calibration of an executable discrete-
event simulation model of a requirements inspection process. The model 
supports an arbitrary number of documents, each inspected by an arbitrary 
number of reviewers. 

The model was developed systematically by following an existing method 
[RNM03]. The following steps were conducted: the creation of a static 
process model, the collection and analysis of empirical data, the subse-
quent creation of an influence diagram, and the final creation and calibra-
tion of the dynamic model. The model was calibrated with data from a re-
quirements inspection experiment and two replications.  

Furthermore, the thesis explains model limitations and lessons learned, and 
gives a detailed description of how to use the model. A first model valida-
tion with real-world data that was not used for the model development 
suggests that the model indeed reflects reality decently: The deviation be-
tween simulation results and real-world data averages 3.3 percent. Conclu-
sions on possible further usage of the simulation model and modeling re-
sults complete this work. 

Keywords: Experimental software engineering, empirical studies, software process 
modeling, software process simulation, software measurement 
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1 Introduction 

1.1 Motivation 

Today's software industry faces various challenges. Systems grow more 
complex while at the same time, quality demands rise. Furthermore, devel-
opment time as well as costs should be reduced. To cope with this, new 
technologies are constantly being developed. One approach to studying the 
discipline of software engineering is the empirical studies approach 
[RBS93]. It focuses on finding out about strengths and weaknesses of 
techniques, methods and tools. The goal is to provide software develop-
ment projects with a specifically tailored set of techniques, methods and 
tools, so that an appropriate result can be achieved. Experimenting is one 
way to gather empirical findings. 

Experiments, however, are expensive undertakings. Software engineering 
is a human-based profession, since all major development steps are per-
formed by humans, using their creativity and knowledge. Thus, experi-
menting in this field naturally comprises numerous humans, which makes 
it expensive. Calculations of the costs of a software professional start at 
$500 per person per day [BGL+96]. To get statistically significant results, 
a high number of experimental subjects is preferred. In addition to the 
costs for these subjects, the costs for experimental setup, conduction and 
subsequent data analysis must be considered. 

The enormous costs of experimentation have been noticed by other sci-
ences years ago. Consequently, simulations were developed to save some 
of these costs. This was partially simplified by the fact that some problem 
areas do not rely on human performance as heavily as software engineer-
ing. In car manufacturing, for example, many real experiments have at 
least been partially replaced by simulations. Thanks to reducing the num-
ber of real experiments and increasing simulation usage, e.g., for parts 
strain, the German car manufacturer BMW could reduce the development 
time of a new engine from 72 months to about 36 months [Fli02], thus sav-
ing enormous costs.  

Simulation is also becoming increasingly popular in the software engineer-
ing community due to the pressure of lowering costs while at the same 
time increasing quality and development speed. Using simulation technol-
ogy lowers costs because it reduces the number of real experiments, and at 
the same time allows variations of the (virtual) experiment at almost no 
additional cost. Simulations can be used for technology evaluation, deci-
sion making in project management, as well as controlling and training, 
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among other fields. Hence, simulation might become an important factor in 
the future of software engineering. 

One of the key problems of simulation is to create accurate models reflect-
ing real world behavior for specific contexts. Correctly mapping the real 
world to the model, executing the simulation, and mapping the results back 
to the real world is crucial to the success of the modeling and simulation 
effort. Integrating empirical knowledge into simulation is an important ap-
proach to achieve this goal, because it allows for the creation of a better 
image of the real world and a closer connection of real and virtual world. 
Nevertheless, many existing simulation models are purely based on hypo-
thetic assumptions that have not been proven in real practice. 

This thesis presents an example for the development of a simulation model 
by using empirical knowledge, and describes the experience with the mod-
eling process. The goal is to demonstrate how empirical knowledge can be 
effectively used for simulation modeling, and to highlight typical chal-
lenges, difficulties, and limitations. The simulation model created here is 
fully operational, and can be adapted easily to different contexts. A practi-
cal example is included. 

1.2 Thesis Goals 

This thesis pursues several goals: 

1. It wants to give an introduction on empirical software engineering. 
Different types of real and virtual experiments are introduced and 
structured. 

2. It will point out the main possibilities of combining empirical stud-
ies and software process modeling and simulation. This emphasizes 
on the diversity of the combination possibilities. 

3. An exemplary model is developed for the case of using empirical 
knowledge for simulations. This includes all modeling steps such 
as deriving necessary data from real world data sources, determin-
ing influences, and creating and calibrating the model, with the 
purpose of pointing out typical problems and possible solutions. 

4. Based on a methodology developed by Rus et al. [RNM03], a sys-
tematic guide to support the usage of empirical knowledge for 
software process modeling will be given. This should simplify cre-
ating other models. 

5. Remaining open questions are described to point out possible fields 
of future work. 
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1.3 Structure of the Thesis 

Chapter 2 describes the basic ideas of experimental software engineering, 
real and virtual experiments, and their relations. The basic ideas of ex-
perimental software engineering are described in Section 2.1. The most 
commonly used types of real experiments are introduced in Section 2.2. It 
is obvious that these experiments are expensive in real life, so new ways to 
reduce costs are currently being researched. One of them are simulations or 
virtual experiments as described in Section 2.3. Section 2.4 gives an 
introduction on the area of software process modeling. 

Chapter 3 introduces the combination of real and virtual experiments. Sec-
tion 3.1 gives an overview over this subject. Three basic variations can be 
distinguished: using empirical knowledge for simulation purposes as de-
scribed in Section 3.2, using simulation for real experiments (Section 3.3), 
and online simulations (Section 3.4). Section 3.5 articulates typical prob-
lems. 

Chapter 4 describes the simulation model development. This was done ac-
cording to the methodology by Rus et al. [RNM03]. The steps taken to-
wards the model are described in Sections 4.2 to 4.6. The model itself, 
model calibration and some extensions towards a more practically usable 
model are explained in Sections 4.7 to 4.10. Section 4.11 gives an over-
view of used empirical knowledge. Model limitations and lessons learned 
are presented in Sections 4.12 and 4.13. 

Chapter 5 describes an exemplary simulation run with data from the real 
experiments, which illustrates the model. The scope of validity of the 
model, preparation steps and simulation results are explained in detail. 
Chapter 6 validates the model with data from another real-world experi-
ment. Chapter 7 summarizes the findings, describes usage possibilities of 
the simulation results, and gives an outlook on future work. 
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2 Background 

2.1 Experimental Software Engineering 

The first software systems were mostly developed by hardware experts. 
This was the case because in the beginning of the software era, most soft-
ware was hidden inside hardware, and fulfilled its duty there as primitive 
firmware or similar. The first software controlled industrial machines, for 
example sustaining a constant pressure in a reaction chamber or the like. 
Only very simple tasks were solved by software, consequentially software 
was not complex, but consisted only of a very limited number of LOC1. 
Ensuring the correctness and reliability of this code was relatively easy and 
was done by the corresponding hardware engineer. 

Another application domain of software was solving mathematical prob-
lems. Algorithms were translated into executable programs, which in turn 
solved equations or the like. Proving the correctness of this code was also 
possible, since in most cases, a mathematician translated an algorithm into 
computer lingua. Well-known mathematical methods could be used for 
verification purposes.  

As hardware systems grew more complicated, software also became more 
complex. Teams of several people were involved in software development, 
introducing more defects into the system. Soon, the software became the 
critical part of the system. Today, even a toaster contains several thousand 
LOC to get the toast exactly the right amount of heat. At the other end of 
the scale, software is controlling large parts of everyday life. Many of the 
amenities are only made possible by software, for example air condition-
ing, entertainment (TVs, radios, video games, shows), the ability to pick 
up the telephone receiver and call anyone anywhere on the globe, and 
other areas. Software also controls critical systems like air traffic control or 
military weapon systems. Demands for correctness and reliability are much 
higher here, since (software) failures can have extreme consequences. 

In 1968, the software crisis was officially stated for the first time at the 
NATO conference in Garmisch-Partenkirchen. New ways other than the 
unsystematic development process used at that time had to be found, espe-
cially in the field of defect detection and prevention: Software engineering 
was born. 

The new engineering approach proposed a very systematic way of devel-
oping software. Traditional engineering disciplines like construction or 

                                                 
1 LOC = Lines of code 
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mechanical engineering demonstrated both the need for and the benefits of 
a systematic process, especially when larger projects were to be completed 
successfully: When building a hut in the back yard, no architect is needed 
for a decent result. When building a skyscraper, starting without specialists 
for materials, static and construction will inevitably result in a complete 
failure. The same is true for software projects. Writing a simple program, 
e.g., for the calculation of Fibonacci numbers, can be done by a single per-
son rather quickly. When it comes to software for bank account manage-
ment, specialists are needed, because failure is not an option, and the sub-
ject is a very complex one. The (in other areas) well-known engineering 
principles help immensely in achieving the time, quality and cost goals 
[Som87]. 

Since 1968, many efforts have been made in the field of software engineer-
ing. They all have in common the main goal: To develop software in a 
controlled manner so that quality, costs and time needed can be forecasted 
with high precision. Other goals include the overall reduction of develop-
ment time and costs and a general increase in product quality. As of today, 
not one single best approach can be identified to achieve these goals. Fol-
lowing Rombach et al. [RBS93], three different approaches to study the 
discipline of software engineering can be identified: 

− the mathematical or formal methods approach, 
− the system building approach, 
− and the empirical studies approach. 
 
While the mathematical or formal methods approach aims at finding better 
formal methods and languages, and understands software development as a 
mathematical transformation process, the system building approach con-
centrates on finding better methods for structuring large systems. Here, 
software development is understood as a creative process, which is con-
trolled through constraints on the resulting products. The empirical studies 
approach focuses on finding out about strengths and weaknesses of tech-
niques, methods and tools. The goal is to provide every software develop-
ment project with a specifically tailored set of techniques, methods and 
tools, so an appropriate result can be achieved. Experimenting is one way 
to gather empirical data. 

Regarding the empirical approach, the word “empirical” requires special 
attention. Derived from the Greek “empeirikós“ (from “émpeiros“ = ex-
perienced, skilful), it means “drawn from experience”. This suggests that 
data from the real world is analyzed in order to understand the connections 
and interactions expressed in the measured data. This is an important point 
about the empirical approach: The data must be measured somehow. 
Measuring empirical data is not trivial, on the contrary: Many wrong deci-
sions are based on incorrectly measured or interpreted data.  
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A good example is the infamous Lufthansa accident at the Warsaw airport 
in 1993. An Airbus A320 did not stop after landing, but raced over the end 
of the runway and collided with an earth bank, resulting in two dead peo-
ple and a destroyed airplane: The flight computer refused to activate any 
brake system (air brakes, thrust reverse, wheel brakes) for nine seconds af-
ter touchdown. The primary reason for this was the incorrectly registered 
plane status. By measuring the revolutions of the wheels, the flight com-
puter determined whether the plane was flying in the air or not. While be-
ing in the air, brakes (including thrust reverse!) can obviously not be acti-
vated. When the plane landed in Warsaw, there was heavy rain, resulting 
in a water film sitting on the runway. An effect known as “aquaplaning” 
prevented the wheels from spinning. Consequentially, the flight computer 
refused to activate the brake systems, which led to the catastrophe [Lad94]. 

What had happened? The software developers believed that by measuring 
whether the wheels spin or not, they could find out whether the plane does 
already have contact to the runway, so brake systems can be activated. Ac-
tually, they only measured whether the wheels were spinning or not. The 
assumed connection “wheels spinning ↔ plane on ground” was not cor-
rect. This makes clear that although measuring may be easy sometimes, in-
terpreting the measured data may be significantly harder. Of course, meas-
urement itself may also be hard: How can “usability” or “user friendliness” 
be measured? 

The aim of the empirical approach consists of two parts: Measuring the 
real world correctly (with correct interpretation of the data measured) and 
coming to the right conclusions from the data measured. This concerns se-
lection and usage of techniques, tools and methods for software develop-
ment as well as activities like resource allocation, staffing and time plan-
ning.  

At this point, the experimental part gets involved. In order to improve 
software development performance, experimenting with changes to the 
current situation needs to be done. Generally, this is achieved by determin-
ing the current situation, then changing some parameters and evaluating 
the results. The problem often is the context, which is hard to record and 
different with every project. Therefore, evaluating a new technique over 
several projects is difficult due to the different contexts. Another point is 
that one approach may work differently in different contexts, so whatever 
is proven by one experiment must not necessarily be true for other contexts 
[Jos88]. 

Experimenting, however, is a rather expensive way of gathering knowl-
edge about a certain technique or tool. The cost can be divided into two 
main parts. First, the experiment itself must be conducted, that is, the ex-
perimental setup must be determined, the experiment needs to be prepared 
and carried out, the data must be analyzed and the results evaluated. These 
are the obvious costs, which can be measured easily.  



2 Background 
 
 
 

 8 

The second part consists of the risk of delaying the delivery of the product. 
If a new technique is tested in a formal experiment before it is used in pro-
duction, this ensures that no immature or unsuitable technique is used in 
real life. On the other hand, since software development is human-based, 
human subjects are needed for the experiment. During the experiment, they 
cannot carry out their normal tasks, which may result in delays, especially 
in time-critical projects. Competitors not carrying out experiments may be 
able to deliver earlier. These costs are not easily to be calculated. Still, us-
ing immature or unsuitable techniques is more expensive in most cases in 
terms of product quality, delivery time and person hours. 

In other engineering sciences, these costs have been known for quite some 
time, and companies naturally wanted to minimize them. One approach is 
simulation. The engine development time at BMW, for example, has been 
reduced from 72 months to about 36 months [Fli02]. Engineers used to 
build five prototypes of a car engine before mass production started. Under 
the pressure of reducing costs, this has been reduced to two prototypes, 
where the second one is merely a proof that the concepts work. This could 
only be achieved by making extensive use of simulation. Most of the char-
acteristics of a modern car engine are calculated and simulated on software 
systems and then only verified by the prototype. 

A major difference between traditional engineering sciences and software 
engineering is that in software engineering, there is no production. After a 
car engine is developed, it is built several hundred thousand times, always 
the exact same way. Therefore, simulations were introduced in this area 
first. Production processes were simulated first, later development proc-
esses followed. 

The software industry is under the same pressure right now as the produc-
ing industry has been 20 years ago. Customers demand higher-quality sys-
tems in less time for less money. Instead of time-consuming experiments, 
simulation can be used as in other engineering sciences. Using simulation, 
possible changes to the development process or utilized tools may be 
evaluated with comparatively low costs and without any risk for the cur-
rent product. The results of the simulation need to be evaluated analog to 
the engine construction example, of course. Still, savings in time and costs 
are significant. 

When looking at experimentation at a larger scale, other goals appear. 
Humanity has been experimenting ever since: interbreeding plants or ani-
mals, developing new technologies, or cooking new meals. All this can be 
seen as experiments. In the end, humankind learned from it. Today, no-
body asks how much money the first Diesel engine meant for its inventor. 
It is just still being used, in a very refined form, and still being improved. 
The experiments of Rudolf Diesel led to a new type of engine. Over time, 
many engineers altered many things and observed the results, they learned 
from their experiments with the engine. 
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The important point is: Whichever experiment is conducted, people should 
learn something from it. This learning should be organized in some form, 
to enable efficient learning and to prevent that findings get lost over time 
and have to be re-discovered. One such approach specifically for software 
engineering is the Quality Improvement Paradigm (QIP) [BW84] devel-
oped in the 1980s by Victor Basili and Dieter Rombach at NASA SEL2. 
One QIP circle consists of six steps: Characterize the project (i.e., describe 
the context), set goals which should be achieved, choose models for meas-
urement, execute the project, then analyze the data acquired, and finally 
package the information gathered during the analysis step, e.g., in the form 
of lessons learned, new/altered models or processes. 

One learning scenario based on QIP is the following: First, the problem(s) 
must be identified. The actual state is measured and then an experiment is 
conducted with some parameters altered to identify where to change about 
the process. Once this is clear, the process is altered and again the actual 
state is measured. The experience learned from the experiment and the al-
tered process is stored, and the (new) process is examined for further prob-
lems, thus starting a new cycle. 

The storage of information gained in the execution phase is important: In-
formation that cannot be retrieved and used is not worth anything. There-
fore, a storage solution must be found which allows easy storing and find-
ing of information. One such approach is the Experience Factory (EF) 
[BCR94a]. While QIP describes a methodological model for advanced 
learning in software organizations, EF provides an organizational model 
for the storage of knowledge. It consists mainly of one experience database 
and many project databases. The experience database contains process 
models, product models, project plans and other packaged information. 
These are gained from various projects, and stored with their context. Each 
project database contains “raw” products and measurement data. After pro-
ject completion, this knowledge is analyzed, packaged and added to the 
experience database. 

To use the knowledge earned in former projects, the experience database 
can be queried during project setup. It provides appropriate models, 
cost/time/staff estimates and so on, which can be used for project planning. 
When the project is running, new measurement data is acquired and stored 
in the project database. In the end, this contributes to the knowledge al-
ready in the experience database. So every single project can be seen as an 
experiment and an opportunity to learn. 

Of course, a lot of research is also being done at universities or research 
institutes. New technologies are developed, examined and refined. There 
is, however, a significant gap between state-of-the-art as in universities and 

                                                 
2 Software Engineering Lab 
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state-of-the-practice in companies. This is partially so because companies 
refrain from using new and (in a productive environment) untested tech-
nologies, but there is also a lack of communication. Research in universi-
ties is often very academic with no immediate goal of practical application. 
Companies, however, prefer specific help with certain problems. This gap 
is not easy to cross. The Fraunhofer Gesellschaft tries to build a bridge be-
tween academic research and industrial needs. 

This thesis focuses on the use of simulation in software development proc-
esses, the combination with empirical studies performed in the real world, 
and demonstrates essential benefits of such a combination using an exam-
ple. 

2.2 Real Experiments 

2.2.1 Overview 

One of the key elements of empirical software engineering is the proposal 
of new models, e.g., for costs or product quality. For example, implement-
ing a new reading technique in the software development process will most 
probably influence the time needed for defect detection and possibly cor-
rection, as well as the costs for these activities. To reflect this in an appro-
priate model, three possible ways to come to a new model can be distin-
guished. Either an existing model can be adapted, or a new model is intro-
duced based on theoretical consideration, or a new model may be derived 
from observation. There are also combinations of two or all three ways. 

When a new model is introduced, adequate measures must be formulated, 
so that the behavior of the model (compared to reality) can be evaluated. In 
the example, this would typically be efficiency (e.g., the number of defects 
found per hour) and effectiveness (e.g., the total number of defects found). 
In a first approach, this measurement is done mostly through experiments. 

The question is usually whether the model corresponds to reality, and if 
not, how and at which points to adapt it. This can be done with experi-
ments. They are called “real” experiments (as opposed to “virtual”) be-
cause they feature real people spending real time for solving (possibly con-
structed) problems in a real-world environment. This costs time and 
money, because the people taking part in the experiment cannot do their 
normal work. This makes clear one characteristic feature of software engi-
neering: Human involvement. Unlike other sciences like chemistry or 
physics, software engineering experiments heavily involve humans, and 
are in turn heavily influenced by human behavior. The psychological as-
pect is similarly important in software engineering as in typical social sci-
ences like anthropology, political science, psychology and sociology.  
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The purpose of an experiment is usually the proof of a hypothesis. A hy-
pothesis is a supposed connection between a number of (controlled) input 
variables and a certain result. The experiment should either prove the cor-
rectness of the hypothesis or show that it is wrong. A null hypothesis sym-
bolizes the opposite state to that suggested in a hypothesis, postulated in 
the hope of rejecting its form and therefore proving the hypothesis. For ex-
ample, if the hypothesis states “Reading technique A is more efficient than 
reading technique B”, then the null hypothesis would be “Reading tech-
nique B is more efficient or equal to reading technique A”. 

One commonly used classification distinguishes the number of experimen-
tal treatments and teams [RBS93]. Table 2.1 gives an overview over the 
possible combinations. 

number of teams per treatment number of treatments 
 1 m 
1 1:1 (Case study) 1:m 

n n:1 (Replicated 
experiment) 

n:m (Lab 
experiment) 

Table 2.1: Classification by number of treatments and teams 

A 1:1 situation does not provide reliable information for comparisons. The 
results may completely depend on the team members that were assigned to 
the experiment (experimental subjects), or on the task the team was sup-
posed to deal with (experimental object). There is no way to know how 
much each of the two extremes influenced the result.  

For example, if a team performs very badly in a defect detection experi-
ment, this may be because team competence in this specific area is low, or 
because the reading technique used was not appropriate, or a combination 
of both. Without further information, there is no way to tell. 1:1 settings 
may be used as a proof of concept, though, or to check in which areas cur-
rent processes may be improved. Case studies usually are conducted as a 
1:1 experiment type. 

A 1:m situation already enables the experimenter to have one team solve 
several problems. This enables him to evaluate whether team performance 
is caused by a certain method (the team performs poorly using one method, 
but well using another) or by the team itself (the team performs poorly us-
ing any method). Still, the methods may all be bad, thus making the team 
perform badly although it is not a bad team per se. Additionally, it is diffi-
cult to exclude learning effects throughout the treatments. 

Using more than one team makes experiments more expensive. Having n 
teams replicate a single experiment (n:1 setting) enables the experimenter 
to assess team performance as well as an average for the method examined 
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in the treatment. Still, this does not allow for comparing different ap-
proaches. This approach is often chosen to prove the validity of findings or 
to examine the benefits of a new method or technique in greater detail. The 
experiment is set up and conducted by one team, and the replicated by 
other teams to validate the results. 

The only approach for comparing different solutions for a problem in one 
experiment is the laboratory experiment. Using a n:m setting, several 
teams perform several tasks. This provides information about how the 
methods compare (relatively) and how the respective team influenced the 
results. Unfortunately, this type of experiment is the most expensive one. 

A n:m setting requires an amount of control that can only be reached in 
laboratory environments. Conducting a n:m experiment in an industrial 
setting would increase project costs extremely, so most controlled experi-
ments can be found in facilities like universities or research institutes. Be-
cause of the high costs and the number of variables monitored, controlled 
experiments are mostly focused very narrowly. Table 2.2 gives an over-
view over the real experiments described in this chapter and some of their 
characteristic factors.  

Three of the most commonly used experiment types will be introduced in 
short: controlled experiments, case studies and surveys. Controlled ex-
periments and case studies may be used to verify a newly introduced 
model very well, whereas surveys usually help in determining the current 
state-of-practice and major causes of undesired effects [Rom01]. 

The three experiment types differ in the types of variables that are consid-
ered. An overview is given in Figure 2.1. Dependent variables are influ-
enced by independent variables and therefore not considered separately. 
There are two types of independent variables: controlled ones and not con-
trolled ones. Typically, the experimenter aims at lowering the number of 
controlled variables to save effort, and to choose the “right” ones for the 
respective context. The not controlled variables are to be kept as constant 
as possible, and also as representative for the respective context as possi-
ble. This prevents uneven influence on the experiment and describes the 
context well. 

Factor Survey Case study Experiment 

Execution control None Low High 

Investigation cost Low Medium High 

Ease of replication High Low High 
Table 2.2: Characteristic factors for real experiments after [WSH+00] 
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Figure 2.1: Variable types in experiments 

2.2.2 Controlled Experiments – Research in the Small 

A controlled experiment aims at completely controlling the experimental 
environment. In the field of software engineering, this includes the number 
and expertise of the test persons, the tasks they are given, but also vari-
ables like at which time of the day the experiments takes place, or room 
temperatures. Because of this high level of control, controlled experiments 
are also called laboratory experiments. The tasks examined in the experi-
ment vary from real problems from earlier software projects to completely 
imagined situations. 

If a new defect detection method were checked for efficiency, for example, 
it would be a good idea to use real documents from an older project. By 
doing so, two benefits can be achieved: First, an average real world prob-
lem is present. This ensures that the results are not only some academic in-
sights, but do help with everyday work. Second, comparing the new 
method against the currently used one is easy. The number and severity of 
errors remaining in the documents after defect detection with the new 
method may be weighed against the time consumed, and so the method 
may be compared against the “traditional” one. This of course only works 
if the test persons do not know the test data because they were part of the 
project, because otherwise, they might not really detect the defects, but 
remember them. 

If test subject knowledge or project confidentiality denies the usage of real 
data as experimental material, then artificial data must be used. This could 
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be specially created documents or a complete training system, which is de-
veloped and maintained exclusively for experimentation purposes. Still, 
help with a problem that really exists is the purpose of the experiment, so 
there should at least be some relation to actual development, to ensure that 
the results are not purely academic. 

Made-up problems may also be used for comparing several new methods. 
Here, the problem may be specially tailored to the methods, focusing on 
areas with special interest. In our example, if project experience has shown 
a great density of interface problems, documents with a complex interface 
structure could be artificially created to test the new methods very inten-
sively in this area. Creating a new scenario which has never happened be-
fore, but could happen someday and possibly have very severe conse-
quences could be a third area where to use this kind of experiment. 

Conducting a controlled experiment, however, requires significant 
amounts of both time and money. In most cases, a n:m setting as described 
in Section 2.2 is used. Due to this costly approach and the amount and 
complexity of the data acquired, only small portions of the software devel-
opment process are analyzed this way. Examples might be probing differ-
ent reading techniques in a defect detection process or different program-
ming languages for solving specific problems. 

2.2.3 Case Studies – Research in the Typical 

A case study does not try to control all variables, but still aims at identify-
ing the significant ones before the project starts. Once this is done, their 
status is recorded and monitored throughout the study, in order to identify 
their influence on the results. This makes case studies suitable for indus-
trial use, because projects are only influenced on a minor scale: The num-
ber of values measured and project documentation (other than product 
documentation) may increase slightly, but this is only a minor “add-on” 
and does not require enormous amounts of extra time and money. 

Most commonly recorded variables are inputs, constraints and resources 
(technical and human). Most of the time, a single actual software project is 
examined. Usually, only one team per task is scheduled, so the 1:1 setting 
is typical for a case study. The same applies for the experiment data classi-
fication: Only real-life data can be used. 

The case study approach can be found far more often in industry than the 
controlled experiment. This is because case studies can be conducted ac-
companying the real project without enormous extra expenses. A sensible 
approach for process changes would be to alter a little part of the develop-
ment process, small enough to prevent great problems for the overall proc-
ess, but big enough to notice possible time and money savings, and then 
conduct a case study for a project with the new process. There is still the 
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danger of confusing team influence and process influence, but in software 
organizations, it is possible to estimate team performance from other pro-
jects, thus extracting process influence fairly accurate. 

Because case studies do only pay special attention to factors typical for the 
current situation, instead of controlling the complete environment, they are 
quite popular. Plenty of knowledge about project progression may be 
achieved at relatively low costs in a realistic setting. 

2.2.4 Surveys – Research in the Large 

In contrast to case studies where monitored variables are defined before 
the project starts, surveys are retrospective studies: The occurrence that is 
to be examined has already taken place [WSH+00]. This means that typi-
cally the survey is planned and conducted after the project is finished. The 
focus of surveys lies on larger-scale relations and not so much on details. 
The experimenter tries to collect as much data as he can find, evaluate it 
and determine connections between the discovered factors and the results. 
An analogy would be an assessment in a company: There is no influence 
of the survey on the project and the data available. The experimenter can 
only use whatever data were recorded throughout the project. Examples for 
surveys can be found in [Lur02] and [Mey02]. 

This makes clear one great danger of surveys: If a survey states (from 
comparisons of past projects) that a certain factor combination has a sig-
nificant effect on the project outcome, this may be an incorrect assump-
tion. The observed effect may not be caused by the formulated factor com-
bination, but by another reason that was not discovered because it was not 
recorded during the project.  

Of course, this danger does not only exist in surveys, but also in laboratory 
experiments and case studies, where the researcher has the possibility to 
set the monitored variables. The difference is that in laboratory experi-
ments and case studies, he can use his experience to minimize the risks of 
mistakes such as not measuring important variables. A normal project usu-
ally is not explicitly set up to later support a survey, but to achieve the de-
sired goals at minimum costs. Hence, the risk that important variable data 
are missing is greater in surveys than in laboratory experiments and case 
studies. 

The results of a survey are usually not as detailed and “hard” as results 
from a case study or a controlled experiment. If a significant cause for a 
certain undesired effect was (supposedly) detected, a more thorough inves-
tigation may be undertaken to refine the findings. This may be done in 
form of a case study or a formal experiment, depending on the situation. A 
case study may be conducted if a strong indication exists that a certain fac-
tor influences the result significantly, and there is a proposal to improve 
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that factor with only a limited risk of failure. If there are several improve-
ment proposals, or if it is not even sure which factor(s) are to be altered, a 
formal experiment may help reducing the risk for everyday business, at 
higher experimentation costs. 

2.2.5 Experiment Sequences 

One of the biggest problems with experiments is comparing and evaluating 
the results. This is easy to understand when looking at surveys or case 
studies, because here, the context can only be described, not changed. 
Nevertheless, why is this also difficult with controlled experiments? 
Wasn’t one of their advantages the complete control of all variables, in-
cluding the context? 

Controlling all variables makes the results very valid – in the respective 
context. Example: Fagan argues that most defects would be detected dur-
ing team meetings [Fag76], whereas McCarthy et al. [MPSV96] and Votta 
[Vot93] come to the contrary result. The context is very different in all 
three cases. So which study is “correct” and which one not? This question 
cannot be answered, because in their respective contexts, all three are cor-
rect. 

Recording the context with every study is very important to evaluate the 
outcome. However, to come to a more comprehensive view of the software 
development process, all the different studies must be combined somehow. 
Their “essence” must be extracted and combined somehow. This can be 
done by regarding all experiments in one area (requirements specification, 
defect detection,…) as a sequence of experiments. Common variables and 
phenomena may then be detected and included in the global model. 

Experiment sequences may be planned or unplanned. A planned experi-
ment sequence usually consists of a number of teams conducting a number 
of experiments. An unplanned sequence collects experimental data from 
many experiments and extracts commonalities and differences. In most 
cases, the majority of the teams will take part only in one experiment, and 
the experiments usually examine similar phenomena. 

An example for an unplanned experiment sequence can be found in 
[Arm02]. Here, the author examined a large number of experiments (sur-
veys, case studies and laboratory experiments) and extracted factors that 
influence the progression and results of software inspections. The factors 
form a complex network of interrelations. Only very few factors were 
found in every experiment that was reviewed. The combination of the ex-
periments showed new correlations that would not have been obvious 
when regarding every experiment individually. 
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The question of the context, however, is still not answered satisfactory. 
How can factors be included that significantly influence the process only 
sometimes? Here, for example a model of the software development proc-
ess would need to be tailored to the specific situation. Context information 
is mandatory and must be individually determined for each situation. De-
pending on the context, some factors may be left out at some point, while 
others are added. More research is needed here to determine when to in-
clude what. 

A planned experiment sequence, on the other hand, might consist of sev-
eral teams carrying out several tasks. For the purpose of evaluating a word 
processor, these tasks might be writing a 50-page thesis with few figures, 
writing a 5-page report with lots of formulae, and writing a 1-page applica-
tion for a scholarship. One possible experimental setup is depicted in Table 
2.3. By shuffling teams and tasks, both team performance and tool capabil-
ity can be evaluated.  

Unplanned experiment sequences may be used when findings from iso-
lated experiments are to be generalized and supported by a broader founda-
tion. Analyzing many experiments concerning similar phenomena can lead 
to new conclusions and explanations, rather than a single experiment. In 
addition, case studies and surveys are often too hard to coordinate with 
each other to form a planned experiment sequence. 

Planned experiment sequences may be used to break up tasks too complex 
to be investigated in a single n:m laboratory approach. By conducting an 
experiment sequence, the researcher may examine a complex phenomenon 
over several years while not losing his focus. 

Task 
Team 

Thesis Report Application 

1 X X  

2 X  X 

3  X X 
Table 2.3: Exemplary setup for a planned experiment sequence 
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2.2.6 Benefits 

Following Basili et al. [BSH86], benefits in the following areas can be ex-
pected from experiments in software engineering: 

- Basis. Experiments provide a basis for the needed advancement in 
knowledge and understanding. Through experiments, the nature of the 
software development process can be assessed and evaluated. 

- Process and product effects. Experiments help to evaluate, predict, un-
derstand, control and improve both software development process and 
product. 

- Model and hypothesis development and refinement. In iterations, mod-
els are built and hypotheses about the models postulated. These hy-
potheses can be tested by experiments and then be refined, or new 
models can be constructed. 

- Systematic learning. In a rather young profession such as software en-
gineering, where there is still very much to learn, it is important to fol-
low a systematic approach, rather than intuition. 

2.3 Virtual Experiments 

2.3.1 Overview 

To overcome the limitations and problems with real experiments, many 
professions turned to virtual experiments. While in the 1960s or 70s, nu-
clear weapon tests were a rather usual phenomenon, this has ceased (al-
most) completely in the new millennium. In part, this reduction has been 
caused by the increased knowledge about the harmful side effects of nu-
clear weapons (namely radiation and contamination of vast areas for thou-
sands of years), but not completely. For more information about human ra-
diation experiments, please refer to [oE94]. 

Since the military has priorities other than preventing ecological damage, 
but wide parts of human society was not willing to accept that, other ways 
for testing these weapons had to be found. Today, (at least some rich west-
ern) nations have the ability to simulate nuclear explosions. This saves 
enormous expenses, because real testing is always destructive and nuclear 
weapons are not exactly cheap. In addition, simulations are not getting so-
ciety upset. Another great advantage is that simulations can be repeated as 
often as wished with any set of parameters, which is impossible with real 
tests. 
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Other areas where simulation is used amply are mechanical engineering or 
construction. Here, simulation helps saving cost and time. As a rather 
young profession, software engineering has only recently started to dis-
cover and use the benefits of simulation. Empirical software engineering 
yet is not very common in industry. Many decisions are still based on in-
tuition rather than measured data. This trial-and-error approach is very ex-
pensive and delivers lower-quality products than more systematic ap-
proaches would do. When implemented, experiments already yield good 
results, for example in choosing a reading technique for inspections. 

Still, the required experiments cost a lot of money, which companies natu-
rally dislike, despite the benefits. But as in other professions, simulation or 
virtual experimentation can also help with that in software engineering. A 
virtual experiment is conducted in two basic parts: modeling the real-world 
situation, and afterwards simulating it on a computer. The model tries to 
reproduce some aspects of the real world as accurately as needed, in a rep-
resentation that can be used in the simulation. The optimal model would 
contain exactly the entities and relations needed for the simulation, nothing 
more and nothing less. 

An entity represents an element of the real world, e.g., a person or a docu-
ment. Like their real counterparts, entities interact with each other; this is 
mapped to relations in the model. One problem in modeling is that it is 
usually not clear which entities and relations of the real world need to be 
modeled. This depends on the scope of the model: If the goal is the predic-
tion of product quality, other factors must be included than when cost op-
timization is aimed at. In any case, including too many factors increases 
model complexity unnecessarily and may even influence results, whereas 
considering too few factors may render the results unreliable. 

Working with simulations can be seen as research in a virtual lab (Figure 
2.2). The conventional software engineering laboratories explore the re-
search object by using various empirical studies, e.g., controlled experi-
ments or case studies. The virtual laboratory examines its research object 
with simulations. Transferring information from one to the other can help 
improve either research results, as shown in Chapter 3. 
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Figure 2.2: Real and virtual laboratory approach based on [Hag03] 

Simulations come in two main variations: discrete and continuous. In dis-
crete event simulations, variables can change their value only at discrete 
moments of time, as opposed to continuous simulations, where their values 
change continuously with time. A hybrid approach tries to combine the 
two, to overcome the specific disadvantages. Any simulation helps de-
creasing experiment costs by reducing the amount of people needed to 
conduct the experiment and by speeding up the process faster than real-
time. 

Simulation supports any of the three types of experiment regarded earlier, 
each in a different way. Once the simulation model has been built and veri-
fied, laboratory experiments can at least partially be replaced, for example 
to determine the consequences of (gentle) context changes. Case studies 
focus on monitoring real-life variables, so completely replacing them by 
simulations would not make sense. Simulations may still be useful for 
identifying variables that should be monitored. A simulation of an altered 
process can reveal variables that are likely to change significantly, so the 
case study can pay special attention to them. Regarding the other direction 
of information flow, case studies can deliver valuable data for calibrating 
the simulation model. The authentic nature of the data (they are taken di-
rectly from a real project) also helps refining the model. 

Simulation does not seem very useful replacing surveys, since surveys are 
optimized for finding relations in real-life processes. Replacing surveys of 
real processes with surveys of modeled processes would not save time or 
money. Actually, surveys can supply information for simulation models, 
like case studies: In the retrospective, problems often become obvious that 
were invisible during the project. A survey reveals them in many cases. 

Let’s say that a certain product was delivered significantly later than 
planned, and that this phenomenon did not occur for the first time. A sur-
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vey reveals that the customer changed the initial specifications of the soft-
ware several times in cooperation with customer service. However, it took 
customer service several weeks to communicate these changes to the de-
velopment team, thus already delaying the necessary rework and, in addi-
tion, making it more complex by forcing the developers to change a more 
mature piece of software. 

The survey reveals this lack of communication within the software devel-
opment process, and modeling that part of the process could help under-
standing and solving the problem. Once the model has been built, the data 
from the survey can be used to calibrate it. Process changes can then be 
simulated before realizing them in the actual process. This indicates that 
surveys and simulation should be used complementary, not alternatively.  

2.3.2 Simulation in Software Engineering 

Simulation is increasingly being used in software development processes. 
After ignoring it for a long time, software engineers are beginning to real-
ize the benefits of simulation. These benefits may be found in the areas of 
strategic management of software development, operational process im-
provement or training situations [KMR99]. According to the respective 
purpose, the simulation focus ranges from lifecycle modeling (for long-
term strategic simulation) to small parts of development, for example a 
code inspection (for training purposes). 

Due to the ever-increasing demands to software (better, faster, cheaper), 
software development has changed a lot during the past 20 years. Small 
programs written by single persons have evolved into gigantic “code mon-
sters” developed and maintained by hundreds or thousands of people. In 
addition, software fulfils more functions every day, thus increasing com-
plexity even more. To cope with this, new techniques, methods and tools 
are being developed constantly. New programming paradigms and lan-
guages are introduced to improve the quality of software development and 
the resulting products. 

There is, however, no silver bullet for software development. Each tool or 
programming paradigm has its own benefits and disadvantages. The 
hugely popular object-oriented programming, for example, makes con-
structing large systems possible at all and improves product quality in most 
cases. Nevertheless, engine control software at Bosch is still developed in 
a functional manner, because using object-oriented technology would only 
make the system more complex and slower. 

This example makes it clear that there must be some kind of evaluation for 
new technologies. No engineer would build a bridge with new and un-
tested material. The same applies to software engineers: Using a new pro-
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gramming paradigm without testing it properly may result in a disaster, 
namely low product quality and time/cost overruns. 

The first steps in investigating the possibilities and limitations of new 
technologies are usually taken by experimenting. With respect to this, 
software engineering is not any different from other engineering sciences. 
Once the properties of the examined technique/method/tool are clear, most 
engineering sciences take the next step: simulation. Simulation enables the 
experimenter to examine the test object in an environment different from 
the usual one with relatively little extra effort. 

Software engineering has only recently started to discover the possibilities 
of simulation. In this section, the benefits of simulations will be discussed, 
as well as the question what to simulate. Two different simulation ap-
proaches will be introduced later in this chapter, as well as their combina-
tion. 

Three main benefit classes of software development process simulation can 
be identified: cost, time and knowledge improvements. Cost improvements 
originate from the fact that conventional experiments are very costly. The 
people needed as experimental subjects are usually employees. This makes 
every experimentation hour expensive, since the subjects get paid while 
not immediately contributing to the company’s earnings. Conducting a 
simulation instead of a real experiment saves the cost for experimental 
subjects. 

Time benefits can be expected from the fact that simulations can be run at 
(almost) any desired speed. While an experiment with a new project man-
agement technique may take months, the simulation may be sped up al-
most arbitrarily by simply having simulation time pass faster than real 
time. On the other hand, simulation time may be slowed down arbitrarily. 
This is done in biological processes simulation, for example. It might be 
useful in a software engineering context when too much data is accumu-
lated in too little time and therefore cannot be analyzed properly. While in 
the real world, decisions would have to be based on partial information, 
the simulation can be stopped and the data analyzed. When the analysis is 
complete, then the simulation can be continued with a decision based on 
the completely analyzed data. 

Knowledge improvements stem mainly from two areas: Simulation can be 
used for training purposes and experiments can be replicated in different 
contexts. Training software engineers in project management, for example, 
requires a lot of time. The trainee needs to make mistakes to learn from, 
which in turn cost time and money in the project, and has to be instructed 
to prevent him from making real bad mistakes which would cost even 
more time and money. Training them in a laboratory setting is even worse. 
Using a simulation environment such as the one introduced in [Nav02] en-
ables the trainee to experience immediate feedback to his decisions. The 
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consequences of choosing a certain reading technique, for example, do not 
occur months after the decision, but minutes. This way, the complex feed-
back loops can be better understood and mistakes be made without endan-
gering everyday business. 

Simulations can also be used to replicate an experiment in a different con-
text, for example with less experienced subjects. If the properties of the 
experimental objects are sufficiently explored, the consequences of such 
changes can be examined in simulations instead of costly experiment repli-
cations. Learning from simulations can save both time and money, com-
pared to real experiments. 

Another useful application of simulation are high-risk process modifica-
tions. This may be (yet) uncommon processes, or catastrophe simulations. 
An example for the first is Extreme Programming, which seemed to con-
tradict all software engineering principles of documentation and planning 
at first, but proved beneficial in certain situations after all. When high-risk 
process changes are to be examined, simulations can provide a sandbox in 
which the changes can be tried out without any consequences. If the results 
show the proposed changes to be a complete letdown, at least no money 
was spent on expensive experiments.  

A catastrophe simulation can investigate extreme process changes, for ex-
ample the loss of key persons in a project. While it is clear that this will in-
fluence the process and its outcome noticeably, determining quantitative 
effects can only be done in an experiment. Will it be 20% delayed, or 
200%? What about product quality? Since this situation rarely occurs, this 
kind of real experiment is not conducted because of the high costs. A 
simulation does not have such high costs. It probably also does not forecast 
the exact numbers, but nevertheless, it shows their magnitude. It may also 
show key problem areas, which may then be addressed in real life, to ab-
sorb the worst consequences of the hypothetic catastrophe. 

The following classification of simulations follows Kellner et al. 
[KMR99]. The authors have determined relationships between model pur-
pose and what has to be modeled, as well as classified approaches how to 
simulate. 

When a simulation is to be set up, the first question that is to be answered 
is for the purpose. What is the simulation to be used for? Is it for strategic 
planning, or for training, or operational process improvement? After hav-
ing answered this question, it is possible to determine what to include in 
the simulation, and what to leave out. To structure this decision, the model 
scope, result variables, process abstraction and input parameters can be 
distinguished. 

The model scope must be adapted to the model purpose. Let’s say a soft-
ware company wants to test a new reading technique for defect detection. 
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Clearly, the inspection process must be modeled, but changes to the read-
ing technique will most likely have other effects later in the development 
process. The defect density might be higher, therefore lowering product 
quality and increasing rework time. This must be considered in the model 
because otherwise, the impact of the process change is not reflected cor-
rectly in the model. 

According to Kellner et al. [KMR99], the model scope usually reaches 
from a part of the lifecycle of a single product to long-term organization 
considerations. They introduced two sub-categories: time span and organ-
izational breadth. Time span is proposed to be divided triply: Less than 12 
months, 12–24 months, and more than 24 months. Organizational breadth 
considers the number of product/project teams: less than one, exactly one, 
or multiple teams involved. 

The result variables are mandatory for answering the questions posed 
when determining the model purpose. Variables can be thought of as arbi-
trary information sources in an abstract sense here, however, most models 
include variables such as costs, effort, time consummation, staffing needs 
or throughputs. The choice of variables depends once again on the purpose 
of the model. If the purpose is to predict overall end-of-project effort, vari-
ables other than the ones needed for predictions at the end of every major 
development step must be measured. 

Questions like this also influence the level of abstraction at which the 
model is settled. If effort at every major development step is to be deter-
mined, the model probably needs a finer granularity than if only overall 
end-of the project effort is the focus. In any case, it is important to identify 
key activities and objects (documents) as well as their relationships and 
feedback loops. In addition, other resources such as staff and hardware 
must be considered. Depending on the level of abstraction, this list gets 
more or less detailed. 

Finally, input parameters must be determined. They depend largely on the 
desired output variables and the process abstraction. In general, many pa-
rameters are needed for software process simulation; the model by Abdel-
Hamid and Madnick [AHM91] requires several hundred. Kellner et al. 
[KMR99] provide some examples: effort for design and code rework, de-
fect detection efficiency, personnel capabilities,… Figure 2.3 illustrates the 
relationships among the aspects described above. 
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Figure 2.3: Relationships among model aspects after [KMR99] 

After determining the purpose of the model and what to include, the choice 
of a simulation technique comes up. The continuous and the discrete simu-
lation approach will be introduced in sections 2.3.3 and 2.3.4, as well as 
their combination (Section 2.3.5). In addition to that, there are several 
state- and rule-based approaches, as well as queuing models [1299]. 

Simulation techniques may be distinguished into visual and textual mod-
els. Most models support some kind of visual modeling today, to ease de-
velopment of the models. Some modeling tools support semi-automatic 
validation functionality, e.g., Fraunhofer IESE’s Spearmint. Appropriate 
possibilities to specify interrelationships among entities of the model en-
able accurate modeling of the real world. Continuous output of result vari-
ables as opposed to only presenting the results allows monitoring the simu-
lation run and early intervention. Interactive simulations allow for altering 
input variables during execution. 

Simulations can be entirely deterministic, entirely stochastic or a mix of 
both. Entirely deterministic models use input parameters as single values 
without variation. The simulation needs to be run only once to determine 
its results. A stochastic simulation assumes random numbers out of a given 
probability distribution as input parameters. This recognizes the inherent 
uncertainty in software development, especially when evaluating human 
performance. Consequentially, several runs are needed to achieve a stable 
result. Batch runs of simulations with changed input parameters simplify 
this approach significantly. 
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A sensitivity analysis explores the effects of input variable variations on 
the result variables. This has two advantages: First, the researcher knows 
how much variation in the results has to be expected due to variations in 
input parameters, and second, he can identify the parameters with the big-
gest influence on the result. These should be handled and examined with 
special care. 

Finally, to obtain valid results from the simulation, calibrating the model 
against the real world is necessary. This should be done by integrating ac-
tually measured data into the model, and comparing the results of simula-
tions of real processes with the respective real-world values. Accurate 
measuring of input parameters and result variables is mandatory here. In 
many cases, however, there is no suitable real-world data available. In this 
case, Kellner et al. [KMR99] suggest trying to construct the data needed 
from data available (effort → costs by assuming an average hourly rate) or 
retrieve it from original documents, rather than final reports, or obtain es-
timates from the personnel or published values. 

2.3.3 Continuous Approach (System Dynamics) 

In the early 1970s, the Club of Rome started an initiative to study the fu-
ture of human activity on our planet. The initiative focused on five physi-
cal and easily measurable quantities: population, food production, indus-
trial capital, production and non-renewable natural resources [Pfa01]. A 
research group at the Massachusetts Institute of Technology (MIT) devel-
oped a societal model of the world. This was the first continuous simula-
tion model: The World Model. 

Today, most continuous models are based on differential equations and/or 
iterations, which take several input variables for calculation and in turn 
supply output variables. The model itself consists of nodes connected 
through variables. The nodes may be instantaneous or non-instantaneous 
functions. Instantaneous functions present their output at the same time the 
input is available. Non-instantaneous functions, also called memory func-
tions, take some time for their output to change. 

This approach of a network of functions allows simulating real processes 
continuously. An analogy would be the construction of mathematical func-
tions (add, subtract, multiply, integrate) with analog components like resis-
tors, spools or condensers.  Even complex functions containing partial dif-
ferential equations that would be difficult or impossible to solve analyti-
cally or numerically may be modeled using the three basic components 
mentioned above. Before computers became as powerful as they are today, 
the analogue approach was the only way to solve this kind of equations in 
a reasonable time. Due to the continuous nature of the “solver”, the result 
could be measured instantly. 
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Of course, simulating this continuous system on a computer is not possible 
due to the digital technology used. To cope with this, the state of the sys-
tem is computed at very short intervals, thereby forming a sufficiently cor-
rect illusion of continuity. This iterative re-calculating makes continuous 
models simulated on digital systems grow complex very fast. 

In software engineering contexts, continuous simulation is used primarily 
for large-scale views of processes, like management of a complete devel-
opment project, or strategic company management. Dynamic modeling en-
ables us to model feedback loops, which are very numerous and complex 
in software projects. 

2.3.4 Discrete Approach 

The discrete approach shows parallels to clocked operations like car manu-
facturers use in their production. The basic assumption is that the modeled 
system changes its state only at discrete moments of time, as opposed to 
the continuous model. So, every discrete state of the model is characterized 
by a vector containing all variables, and each step corresponds to a change 
in the vector. 

Example. Let’s consider a production line at a car manufacturer. Simpli-
fied, there are parts going in on one side and cars coming out at the other 
side. The production itself is clocked: Each work unit has to be completed 
in a certain amount of time. When that time is over, the car-to-be is moved 
to the next position, where another work unit is applied. (In reality, the 
work objects move constantly at a very low speed. This is for commodity 
reasons and to realize a minimal time buffer. Logically, it is a clocked se-
quence.) This way, the car moves through the complete factory in discrete 
steps. 

Simulating this behavior is easy with the discrete approach. Each time a 
move is completed, a snapshot is taken of all production units. In this snap-
shot, the state of all work units and products (cars) is recorded. At the next 
snapshot, all cars have moved to the next position. The real time that 
passes between two snapshots or simulation steps can be arbitrary. Usually 
the next snapshot of all variables is calculated and then the simulation as-
signs the respective values. Since the time needed in the factory for com-
pletion of a production step is known, the model describes reality appro-
priately. 

A finer time grid is certainly possible: Instead of viewing every clock step 
as one simulation step, the arrival at a work position and the departure can 
be used, thereby capturing work and transport time independently. 

The discrete approach is used in software engineering as well. One impor-
tant area is experimental software engineering, e.g., concerning inspec-
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tions. Here, a discrete simulation can be used to describe the process flow. 
Possible simulation steps might be start and completion of activities and 
lags, together with special events like (late) design changes. This enables 
discrete models to represent queues. 

2.3.5 Hybrid Approach 

Continuous simulation models describe the interaction between project 
factors well, but lack in representing discrete system steps. Discrete simu-
lation models perform well in the case of discrete system steps, but make it 
difficult to describe feedback loops in the system. 

To overcome the disadvantages of the two approaches, a hybrid approach 
as described by Martin and Raffo [MR00] can be used. In a software de-
velopment project, information about available and used manpower is very 
important. While a continuous model can show how manpower usage lev-
els vary over time, a discrete model can point out bottlenecks, for example 
inspections. Because of insufficient manpower, documents are not in-
spected near-time, so consumers of those documents have to wait idly, 
therefore wasting their manpower. 

In a purely discrete approach, the number of inspection steps might be de-
creased to speed up the inspection process. While possibly eliminating the 
bottleneck, this probably introduces more defects. The discrete model 
would not notice this until late in the project, because continuously chang-
ing numbers are not supported. The hybrid approach, however, would in-
stantly notice the increase, and – depending on how the model is used for 
project steering – more time would be allocated for rework, possibly to the 
extent that the savings in inspection are overcompensated. Thus, the hybrid 
approach helps in simulating the consequences of decisions more accu-
rately than each of the two single approaches does. 

2.3.6 Benefits 

Following Kellner et al. [KMR99], benefits in the following areas can be 
expected from simulation in software engineering: 

- Strategic management issues. These can be questions like whether to 
distribute work or to concentrate it in one spot, or whether develop-
ment should be done in-house or be out-sourced, or whether to follow 
a product-line approach or not. 

- Planning. Planning includes forecasting schedule, costs and product 
quality and staffing needs, as well as considering resource constraints 
and risk analysis. 
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- Control and operational management. Operational management com-
prises project tracking, oversight of key project parameters such as 
project status and resource consumption, comparing actual to planned 
values, as well as operational decisions such as whether to commence 
the next major phase (e.g., coding, integration testing). 

- Process improvement and technology adoption. This includes evaluat-
ing and prioritizing suggested improvements before they are imple-
mented as well as ex post comparisons of process changes against 
simulations of the unchanged process with actually observed data. 

- Understanding. Simulation models can help process members to better 
understand process flow and the complex feedback loops usually 
found in software development processes. Also, properties pervasive 
through many processes can be identified. 

- Training and learning. Similar to pilots training in flight simulators, 
trainees can learn project management with the help of simulations. 
The consequences of mistakes can be explored in a safe environment 
and experience can be collected that is equivalent to years of real-
world experience. 

2.4 Software Process Modeling 

An area closely related to simulation is software process modeling. Model-
ing the software process is the logical step that has to be taken before a 
simulation can commence. The process model is converted into an execu-
table form for the simulation. Thus, without a process model correctly de-
scribing the software process, no sensible simulation can be achieved. 

To understand software process modeling, one must first understand how 
software is developed in the real world. On a very abstract level, an or-
ganization uses inputs and resources to produce output. The organization 
can be a manufacturing company, a knowledge company, or a research in-
stitute. Every organization owns certain resources, e.g., real estate, build-
ings, people (or their knowledge), or financial assets. Inputs are trans-
formed into outputs using the available resources. Inputs may be raw mate-
rial, or a customer’s problems, and outputs assembled machinery or a solu-
tion for the customer’s problems. 

Generally, the transformation process adds value to the inputs, so that the 
outputs can be sold in some form. This way, the organization earns money 
to replenish resources and to grow. Not all organizations want to grow in 
size, though. Many research institutes grow to a “reasonable” size, and 
then concentrate on expanding knowledge, not personnel. Here, the surplus 
from the outputs is used for resource improvement only. 
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A traditional example for such an organization would again be a car manu-
facturer. It uses raw material such as steel or aluminum as inputs and pro-
duces cars as output. The transformation process is fulfilled using the 
manufacturer’s resources: buildings, machines, the workers, and engineers 
constructing the cars. Earnings are used to improve the transformation 
process, in order to produce the same output at lower input and resource 
consumption or to produce more or higher-quality output at the same input 
and resource consumption. 

A software organization works similarly and differently at the same time. 
Similarly, because it also uses inputs and resources to produce outputs, and 
differently because most of its inputs and outputs are not physical objects, 
but immaterial. This results in the absence of any sort of production proc-
ess. Using the car manufacturer example, the process would be over when 
the car is fully developed – it would never be built. This clearly distin-
guishes software development processes from traditional engineering 
processes. However, software organizations share with traditional organi-
zations the urge to improve their processes. 

The more complex the software products became, the more obvious be-
came the need for process improvements. A variety of techniques, methods 
and tools were developed to cope with this, such as different programming 
paradigms, higher-level programming languages, and tools to administer 
the complexity of developing software products, the so-called IDEs3. 
While this was sufficient to reach a certain quality standard for smaller 
projects, it was not enough to support the organization-wide process im-
provements needed. 

Software process modeling aims not at helping the development process 
with a set of individual tools, but at understanding the software organiza-
tion as a whole. Figure 2.4 shows a simplified model of the software de-
velopment process. In this model, products and activities alternate. Even in 
this primitive form, it gives a clue what must be considered in a software 
project. Coding cannot start before the requirements are fixed, for exam-
ple.  

                                                 
3 IDE = Integrated Development Environment 
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Figure 2.4: Simplified software development process 

Of course, real process models are way more complex than the example 
presented here. They usually operate on different levels of abstraction, be-
cause system complexity is too high to be sensibly modeled in one model. 
A two-level approach might model the complete process on a higher 
abstraction level, considering major process steps, and model each of the 
steps individually on a lower abstraction level, thus in more detail. The 
two levels need to be connected in some way, though, so changes in a sub-
process are reflected in the global model and vice versa. 

This approach of modeling the complete process has been pursued by 
manufacturing companies for a long time. Modeling a software company is 
driven by the same goals (time, costs, quality), but typically models a to-
tally different environment. In a manufacturing company, mostly technical 
processes are modeled (with the focus on controlling machinery), whereas 
a software company consists mainly of people. Controlling machinery 
(hardware) should only form a small part of the development process, the 
real work is done by human minds. This makes software processes difficult 
to model per se, because modeling creative processes is not understood 
very well yet. Additionally, multiple feedback loops make the situation 
more complicated. 

One consequence of those feedback loops are changes to the development 
process. These changes are not as severe and do not happen as often in 
manufacturing processes because auf two reasons. First, the production 
processes are much better understood than software development proc-
esses, and second, the intention of (automated) manufacturing is to have 
only very few changes, for this would change the whole production line. 
Software development processes are rather young; the software community 
is still struggling to evolve from the art to the profession. Consequentially, 
there is no engineering handbook yet, which says what to do in certain 
situations. 
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So, modeling software development processes faces two great challenges. 
First, the processes to be modeled are only partially researched, and sec-
ond, managing changes in the processes is difficult. Models need to be up-
dated constantly to match new research results and real-world evolutions. 
In general, process modeling goals comprise but are not limited to 
[Mün02]: 

− enable human understanding and communication, 
− improve software development activities, 
− support project management, 
− guide project team members, 
− trace project history, and 
− automated execution of processes. 
 
If the challenges can be addressed adequately, process modeling holds 
several benefits. By modeling the process, it is understood better, some-
times even understood at all. Often problems within the process, which 
have gone unnoticed for years, become obvious when it is modeled. The 
modeled process can then be optimized on paper, potential changes can be 
drafted and the consequences predicted. Finally, if the process model is en-
riched with empirical data, the process can be simulated and traced, thus 
enabling better project and resource planning and better directing of proc-
ess changes, which lowers time, costs and quality risks overall. 

There exist two main approaches to construct a model. The first approach 
could be described as theoretical approach, the second one as empirical. 
The theoretical approach builds the “ideal” process by capturing general 
principles of a methodology. This makes instantiation and refinement nec-
essary. Most probably, the real-world process will differ from the con-
structed one. An example for such a model is the waterfall process model, 
which does not work out exactly as planned in the real world. Such theo-
retical models are often used prescriptively. 

The empirical approach tries to transfer the real-world process into a 
model by acquiring its characteristics as accurately as possible. The result-
ing process models are then revised using experience from other processes. 
These models are mainly descriptive, for example, IDEF0 models. 

Many tools and languages exist for process modeling: Appl/A, Funsoft 
Nets, Marvel Strategy Language, Statemate, MVP/L or IDEF0, just to 
name a few. They have in common that they want to help formalize the 
software development process, but differ in many other areas, e.g., the 
level of abstraction or the level of integration. Some regard a rather ab-
stract process, some a more concrete one. Some only present a workbench 
with an (unconnected) set of tools, some an integrated process engine. A 
typical structure for process modeling tools of the latter kind is depicted in 
Figure 2.5 [Mün02]. 
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Figure 2.5: Typical structure for process modeling tools 

Different process models and modeling tools support process improvement 
in a different way. Depending on notation and understandability of the 
model, it might be easy to identify process weaknesses ad-hoc and inte-
grate respective changes. Other notations may support measurement-based 
improvement, for example the GQM approach [BCR94b]. 

In this work, a software process model is enriched with empirical data to 
improve model quality and to enable more accurate predictions for the real 
process. The resulting model may then be executed in a process engine to 
compare the model with real processes. 
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3 Combining Real and Virtual Experiments 

3.1 Overview 

If there are already that many experiments, real and virtual, why is there 
the need for combining them, and with this creating an even more compli-
cated experiment universe? The answer lies in the industrial demands for 
faster and cheaper creation of higher-quality software. Technology alone 
cannot deliver the massive improvements longed for in these three key ar-
eas. Despite new programming paradigms, more sophisticated tools and 
modern integrated development environments, most software projects suf-
fer from significant time and financial schedule overruns and/or poor 
product quality. 

New technologies are being developed continuously to overcome these is-
sues. The problem is, however, that no known technology is optimal for 
every situation. Therefore, new technologies must be tested in the target 
environment for their suitability. While this has been understood quite 
early, it is still not very popular among management due to the costs in-
volved in setting up experiments. Consequentially, simulations have been 
tried to establish to reduce costs while keeping the advantages of experi-
ments. 

The two preceding chapters made clear the specific advantages and draw-
backs of real and virtual experiments. To overcome the respective limita-
tions, the recent research approach of combining real and virtual experi-
ments has proven promising. This combination allows reducing cost and 
time needed through simulating experiments while at the same time almost 
fully preserving the quality of the knowledge gained through the experi-
ments. It can be utilized in decision support, software project management 
and training as well. 

One view on virtual and real experiments is the laboratory view depicted 
in Figure 3.1. The virtual laboratory is responsible for simulations; the real 
laboratory conducts conventional experiments, namely case studies and 
controlled experiments. Between the two, data is exchanged. Each of the 
labs has its own advantages and drawbacks. By combining the two, draw-
backs of one lab may be compensated with advantages from the other. 
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Figure 3.1: Virtual and real laboratories 

Real and virtual experiments may take place in three main timely fashions 
(Figure 3.2). The real experiment may precede the virtual experiment, the 
virtual experiment may precede the real experiment, or both experiments 
may be conducted simultaneously. The first option enables using empirical 
knowledge in designing, calibrating and analyzing the simulation. The 
second option does the same vice versa, and the third option enables to 
capture effects on a “big” process while only conducting a “small” ex-
periment. This is called online simulations.  

Apart from direct connections to empirical experiments, simulations can 
also be used for training purposes. Software project issues and most popu-
lar mistakes can be taught to employees in a sandbox environment. Every-
body knows the famous words “Adding people to a late project makes it 
later”4, but still many project managers do exactly this. Letting them crash 
a simulated project is a cheap and efficient way of education.  

Many project managers complain about insufficient and confusing project 
status information. But even if they have all information they need in an 
easy to understand form, it is still challenging to forecast the project pro-
gress. Simulation can also help here. When entered into a simulation sys-
tem, information gained in a real experiment could be used in a faster than 
real-time simulation of the whole project. This may reveal potential bottle-
necks before they appear, so countermeasures can be taken early. This de-
cision support may help project managers founding their decisions more 
on facts than on intuition. 

 

 
                                                 

4 Also known as “Brooks’ Law” [Bro95] 
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Figure 3.2: Possible timely arrangements of real and virtual experiments 

Simulation can also help communicating with the customer. A seemingly 
little change in requirements may actually delay the project by months. 
This sometimes is hard to explain to non-technical personnel, thus growing 
anger on both sides. A simulation could scale up an appropriate real ex-
periment and thus visualize the consequences of a change request. This 
helps both understanding and evaluating the costs, thereby enhancing cus-
tomer satisfaction. The same applies to the own management. 

3.2 Using Empirical Knowledge for Simulation 

In order to take advantage of a simulation model at all, it must somehow 
describe reality. Any model only reflects a part of the real world, and is 
therefore easier to understand and process, but also never tells the whole 
truth, for some information from reality is left out. Whenever working with 
models, this should be kept in mind. The closer the model relates to the 
real world, the better the behavior of reality can be understood and also 
forecasted. 

3.2.1 Determine Simulation Behavior 

In order to describe the real world as exactly as needed and possible, it is 
necessary to include measures from the real world in the model. This as-
certains and increases model validity. Including this data can be done vir-
tually anywhere in the model. It can be used as an input, to give the model 
a defined starting point to begin with, to evaluate the consequences of this 
combination of input data and process modeled. During the simulation run, 
real-world data can be used to determine model behavior. This can be done 
completely deterministic, for example “If effort for activity A is lower than 
150 hours, assume 200 hours for activity B, otherwise assume 300 hours”, 
but it can also be done partially nondeterministic, e.g., on the base of 
knowledge-based systems. Such a system could analyze the situation (that 
is, the model state as determined by its variables) and try to find similar 
situations with their consequences. After completion of the simulation, the 
simulation results can be compared to real-world data to determine the 
quality of the simulation model and which parts need improvement.  
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Most of these uses of empirical data require the real experiment to have 
taken place before the virtual experiment. For input data, this is obvious. 
Since model behavior needs to be clear when the simulation starts, the data 
used at this point also needs to be available at simulation start. Only output 
data can be made available after the simulation ends. This delays evalua-
tion of the simulation model, but does not affect the simulation itself. 

3.2.2 Enhance Simulation Model 

Once the real experiment is conducted and the data analyzed, it can be 
used to enhance the simulation model, thus the virtual experiment. The 
model can be calibrated by simulating the real experiment and comparing 
the outcomes. By doing this, the quality of the simulation model can be 
evaluated, and model parameters can be adjusted to better reflect reality. If 
discrepancies between the results of real and virtual experiments are much 
greater than expected, revising the concept of the virtual experiment might 
be sensible: Did it really simulate what was expected, or were maybe some 
important factors left out? 

If the results of the simulation and the real experiment sufficiently corre-
spond, the existing simulation model can be expanded using empirical 
data. For example, if the simulation model fairly accurately describes in-
spection efficiency and effectiveness, a new module might be introduced 
considering time and costs of the inspection in respect to the quality of de-
fect detection. For this, the real-world connections need to be determined 
in the real experiment, to enable building that part of the simulation model. 
An initial calibration can be done with the data available from the real ex-
periment, followed by fine-tuning with data from other experiments, if 
their context is known sufficiently. 

3.2.3 Prepare Simulation Model for Data Integration 

If the virtual experiment takes place before the real experiment, only little 
empirical knowledge can be used for the simulation. Since measured data 
is not yet available, only the simulation design can be prepared to be en-
hanced with empirical data in the future. This includes a modular design to 
add additional influence factors and an easy to change configuration of the 
simulation model in terms of altering model behavior. If model parameters 
are hard-coded into the model, it will be more difficult to include discover-
ies made in experiments than when text-based configuration files are used, 
for example. 
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3.2.4 Determine Model Quality 

Simulating past real experiments enables the experimenter to get a feeling 
for the simulation model, to determine its accuracy and mean and maxi-
mum deviations from reality. This is important if the simulation model is 
going to be used to answer specific questions: While it is vital to know the 
answer, it is even more important to know how much it can be trusted. 

3.2.5 Benefits 

Constructing, Calibrating and Validating Simulation Models 

Using empirical knowledge, a simulation model can be brought “to life” at 
all. It may be easy to capture the actual process, that is, the sequence of 
process steps. This does help understanding the process, but not the inter-
dependencies and the dynamic behavior. A good analogy might be a black-
and-white photograph compared to a color video. The photograph shows 
what is present, while the video gives more detailed information about eve-
rything and at the same time shows the dynamic behavior. So, including 
empirical data during the construction of a simulation model yields a much 
more accurate model. 

Validation of existing models is also vital to simulations. The processes 
modeled in the first place may change over time. If this is not reflected in 
the simulation model, the model produces incorrect output data and even-
tually becomes unreliable. So, constantly validating a simulation model 
against the real world is beneficial to simulation results. The same is true 
for calibration: Even if the modeled process per se did not change, em-
ployee skills may change over time. Reflecting this in the simulation 
model, e.g., by altering model parameters results in more accurate fore-
casts. 

Extending Existing Models to new Areas 

Most models are created in increments. The initial core model is extended 
with more modules to describe more aspects of reality. Again, empirical 
knowledge helps constructing, validating and calibrating these add-on 
modules. By integrating empirical data from not yet modeled areas, the 
overall simulation model can be extended to cover these areas. This en-
hances model quality and may result in better forecast capabilities due to 
the more exact image of reality. 
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3.3 Using Simulation for Real Experiments 

The economically more interesting knowledge transfer is from simulation 
to real experiments. Here, more monetary benefits are expected by saving 
experimentation time and thus reducing experimentation costs. This sec-
tion explains which information gained through simulations can be used in 
real experiments, or which real experiments might be replaced by simula-
tions. 

3.3.1 Scoping of Real Experiments 

When a simulation is run prior to a real experiment, this means that the 
simulation results may be used to set the real experiment’s parameters 
more accurately than without that information. In the first place, it can help 
determining which real experiments are needed most. Let’s look at a situa-
tion where several process changes are proposed in order to improve prod-
uct quality while not increasing delivery time or costs. Since real experi-
ments are expensive, usually not every proposal is actually examined. 
There is usually only a limited budget for experiments, which leads to 
someone making a decision which experiment to conduct and which not. 
Whether it is a single human or a group like a steering committee, the de-
cision is always based on a mixture of facts, experience and intuition. 

To better support these decisions, simulations can be used to determine 
which of the possible process changes are likely to have the desired effect. 
If the simulation model adequately reflects reality and has proven to pro-
vide trustworthy results, only the process changes that prevailed in this 
first evaluation stage may be worth an extensive examination. In any case, 
the simulation model gives advice why or why not a certain proposal 
worked out, and where the problem was. Using this information, the pro-
posed process change can be reworked or abandoned. Examining only the 
promising proposals optimizes the ratio of money spent and results 
yielded. 

The same prioritization may be made at single experiment level. Input and 
output variables may not change smoothly over time, but rather little 
changes to an input variable may result in great changes in output vari-
ables. An example is given in Figure 3.3. Assuming that variable x 
changes constantly, variable y shows noticeable behavior: During a rather 
little change of x denoted as a, y changes the amount of b. When a simula-
tion yields this result, special attention should be paid to the “a” part in a 
real experiment. The other parts can rather safely be neglected because no 
great changes to y are to be expected from changes of x there. 
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Figure 3.3: Experimental point of interest 

3.3.2 Determine Data Needs 

There is only little simulation knowledge that can be used in the experi-
ment when the real experiment is conducted before the simulation. If the 
two experiments are planned in advance as a unit, there are, however, at 
least limited possibilities. Depending on the purpose and scope of the 
simulation, the experimental setup may be designed to suit the specific 
needs of the simulation. For example, if there is no simulation model at all 
yet, basic data about the process is needed. The real process must be ana-
lyzed and the experiment set up accordingly, with basic measures to be re-
corded. If there already is a simulation model, maybe even in a decent de-
gree of maturity, the focus might be on fine-tuning the model by including 
more input factors that were neglected so far. The real experiment must re-
flect that in the data measured. This way, at least some meta data from the 
simulation can be used in the experiment. 

3.3.3 Data Validation/Sensitivity Analysis 

Supposing there is a decent simulation model available, it can be used to 
validate data obtained in real experiments. When the simulation model fits 
the real situation, the simulation parameters can be adjusted to the ones in 
the real experiment and the simulation of the real experiment can then be 
run. This way, not the simulation model is validated, but the real experi-
ment. The simulation results should vary from the real results only about 
the same as in simulation validation runs. If variations are too great, this 
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might indicate problems with the real experiment’s results. This way, a 
quick sensitivity analysis of the experimental results can be conducted. 

3.3.4 Benefits 

Reduction of Experimentation Time and Cost 

Generally, wherever a real experiment can be replaced by a virtual experi-
ment, this saves cost. Any real experiment needs test subjects, which in 
turn cost money, whether they are hired externally or chosen from com-
pany staff. The real experiment must be set up every time it is to be con-
ducted. A virtual experiment also needs to be set up, but execution is al-
most free then. Replicating a real experiment requires almost the same ef-
fort as the first time, whereas replicating a virtual experiment merely con-
sists of altering input and model parameters. So, there may be significant 
cost benefits from using simulations for real experiments. 

Since simulations may be run faster than real-time, a virtual experiment 
can be conducted in a shorter time than the corresponding real experiment. 
This saves time, which results in faster integration of new technology into 
the development process. Additionally, time-to-market of the product can 
be reduced when using simulation tools for project steering and decision 
support. Simulation can help making better decisions concerning which 
real experiment to conduct and which not to. 

Simulations can also replace replications and (simple) variations, assuming 
a decent simulation model. Multiply replicating a real experiment with the 
same input parameters using an entirely deterministic simulation model is 
useless of course, since it will achieve the same results every run. Stochas-
tically scattering model and input parameters will give an impression of 
the range the results will be in. 

Simple variations may also be evaluated by a simulation. Research in the 
simulation field is far from being complete and therefore, only simple 
variations may be applied to the simulated process without falsifying the 
results too much. However, these simple variations need not be evaluated 
through real experiments, thus saving time and cost. 

3.4 Online Simulations 

When both the real and the virtual experiment are conducted simultane-
ously, this is called an online simulation. Two basic kinds of online simu-
lation can be distinguished. Both experiments can investigate the same 
matter, or they may examine different matters. In the first case, the results 
can be compared directly. This is useful for model calibration purposes. 
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Since this case is basically the same as the one already described in Sec-
tion 3.2, it is not discussed any further here. For the rest of this work, 
“online simulation” will refer only to the case when different matters are 
examined simultaneously. 

3.4.1 Scale-up 

Real experiments usually only cover a sub-process of a larger process, for 
example, the inspection sub-process of a complete development process. 
Due to the immense costs, it is virtually impossible to conduct a real ex-
periment examining a complete software development process. It might be 
done with a small (<10 people) team, but this does not help in industrial 
software development where development teams consist of hundreds of 
people. So, only a simulation can take care of the complete process. 

Nevertheless, parts can be examined in real experiments. To capture the ef-
fect on the complete process, real and virtual experiments can be combined 
into online simulations. Typically, the simulation covers the large-scale 
process with real experiments examining some selected points of interest. 
This way, changes to sub-processes can be evaluated using empirical data, 
while at the same time the big picture is not neglected. Altering some sub-
process, for example in duration, may result in altered feedback loops 
which cannot be foreseen by only examining the sub-process in an experi-
ment. The simulation keeps track of that. This situation is exemplarily de-
picted in Figure 3.4. The simulation comprises the complete development 
process, while the real experiment examines only the design review sub-
process. In this example, the often-investigated question whether to use 
perspective-based reading or checklist-based reading is focused on. 

The simulation starts first. Since it can be run many times faster than real-
time, the real experiment can start shortly after. It uses the output from the 
simulation, namely the system design. Of course a computer system cannot 
do a system design on its own. In the example, a finished project could be 
used. Assuming a decent simulation model and sufficient measured data, 
the simulation should come to similar results concerning effort and defects 
in the design as the real project. Having replayed the old project so far, the 
real experiment can be started then. The simulation is halted meanwhile, 
since it is waiting for input data from the real experiment. 

Once the real experiment is over, its results need to be analyzed to gather 
input parameters to continue the simulation. In the example, this would be 
mainly the effort spent for the inspection sub-process and the number of 
defects found. The simulated rework would then commence, and after that, 
the rest of the development process is simulated. When the simulation is 
completed, output parameters may be compared to the measured data from 
the real project. How did the changed sub-process affect the whole pro-
ject? Project duration (and linked with this, project costs) is interesting in 



3 Combining Real and Virtual Experiments 
 
 
 

 44 

this context, but also the resulting product quality. Especially remarkable 
effects on other sub-processes can be determined, e.g., great integration 
problems due to poor design inspection performance. 
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Figure 3.4: Online simulation principle 

3.4.2 Training 

Another field of interest is training. Any theory learned in university or 
other classes can only partially be applied to reality. It must be altered, 
adapted and evaluated. In this learning process, mistakes are made. While 
this is dangerous in real projects, using a simulation tool is safe. Employ-
ees can practice project management in a sandbox. Here, no real experi-
ments are held during a simulation run, but the trainee acts as a project 
manager, making decisions and having the simulation model execute them. 
In this case, the real experiment is the trainee himself. For example, if the 
simulated inspection results in many defects found, is a re-inspection after 
rework sensible? In the real world, this would be a major decision, influ-
encing every following project step. In a simulation, making the wrong de-
cision does not endanger any real projects, but shows the trainee the con-
sequences clearly, yet in a safe environment. 

Thus, employees can be trained in a safe environment using simulation 
technology. Whether new employees need training to understand the com-
pany processes or there are regular trainings to improve the knowledge of 
employees, all mistakes can safely be made in a simulation. They do not 
harm the real-world processes, but are a good means of learning how to 
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handle specific situations. Another benefit is that the consequences of the 
trainee’s decision appear almost immediately, whereas in the real world, 
the connection between decision and its consequences is not always obvi-
ous, due to the potentially long time between decision and consequence. 
Simulations reduce this lag to at worst hours, at best only seconds, depend-
ing on the complexity of the simulation model. 

3.4.3 Benefits 

Inexpensive Scale-up 

Online simulations combine the better of the two worlds of simulation and 
real experiments. Using online simulations, specific issues can be exam-
ined while at the same time the big picture is not neglected. This adds 
value to the real experiment, because the effects of the examined issue can 
be evaluated regarding the complete process. 

Immediate Feedback 

Another benefit of online simulations concerns the psychological factor. If 
an experiment for example comparing different reading techniques is con-
ducted, no immediate feedback is supplied to the test subjects as well as 
the experimenters. This may result in poor performance due to lack of mo-
tivation and thus distorted results. A typical question in this context is 
“What is this good for, after all?” Using an overlying simulation that sup-
plies data on the effects on the rest of the process, this question – among 
others – can be answered. 

Visualization Enhancements 

It is especially difficult to explain the consequences of software develop-
ment process changes to non-technical persons, e.g., management. Deci-
sion-makers in the management are often not from the software engineer-
ing domain. A seemingly small requirements change (for the customer) 
may require repeating large parts of the development process, which de-
lays delivery time significantly. Any manager is much more likely to un-
derstand and approve this fact when there is a simulation that visualizes the 
necessary process changes.  

An analogy from the automobile industry would be a car order. The late 
requirements change could be the demand for a car that is 50 centimeters 
longer. This is obviously a major change; however, a person without 
knowledge about car production might wonder why it is possible to get 
another color, but not a longer car. Once this person sees how production 
processes need to be changed for both requests, this becomes clear. 
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This visualization is not only helpful with customers; it also helps the soft-
ware company. It can help determining how many changes a customer 
request involves to the process. A preliminary schedule update may be ex-
tracted, so the cost for the request can be forecasted correctly. This cost 
forecast can then be used for a contract with the customer. The exact de-
termination of the cost is vital to any company: If the costs are higher than 
the revenue too often, it will eventually doom the company. 

Project monitoring may also benefit from the combination of real and vir-
tual experiments. While in conventional project monitoring and steering, 
the focus is on the past with some static forecasts for major project phases, 
using combined empirical data and simulations may enhance project man-
agement significantly. Processing empirical data collected in the already 
passed project phases gives the oversight that project managers are used to. 
When a simulation model is added to project steering, dynamic forecasts 
can be made at every point in the project, thus providing a more precise 
project control. 

3.5 Problems 

The usefulness of every simulation model clearly depends on how exactly 
it describes reality. In order to improve the model in a way that this de-
scription gets more precise, the usage of empirical data from the real world 
is very important [RKP+99].The authors state that often the empirical data 
is the only available and directly traceable link between model and reality. 

Acquiring this data, however, often represents a non-trivial problem. First, 
there is the question of what data is needed for the model. This depends 
mainly on what is being modeled, and to what degree. Models for product 
quality need data about defects, strategic enterprise planning models need 
data about cycle time, and support planning models need both. When it is 
clear what data is needed, it becomes necessary to evaluate how detailed 
the data must be. This depends on the desired granularity of the model, 
whether it is going to be a high-level model or shall simulate on a very de-
tailed level. 

Data Collection 

Once the model focus and scope are determined, collecting data begins. 
This is easiest if empirical experiments can be influenced, or at least the 
data collection. Data specifically needed for the simulation model can be 
acquired, so there is a perfect fit of data and model. Unfortunately, this 
rarely ever happens. 

A more common case is the one where the model is built with an initial 
data set, maybe even from a tailored experiment, but validation and cali-
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bration is done using other data. “Other data” mostly means older data 
which has been sitting in a closet anyway. This way, modeling costs can be 
reduced and the once expensively acquired data can be reused. There are 
problems with this approach. 

Older data may not describe the modeled aspects accurately. This is most 
often found when only data “similar” to the data really wanted is available. 
Sometimes, this can be compensated by deriving the desired data from the 
data available. For example, if defect severity and quantity data is needed 
as model input, but only data on rework is available, the defect data can be 
concluded from the rework data: Longer rework suggests more and/or 
more severe defects. However, this can only be done if more information 
about the context is available. In the example, this would be data about the 
technology used, personnel knowledge and experience and of course the 
type of system that was developed. 

Data Interpretation 

Data on effort and defects has a great advantage: It can be quantified rather 
easily. This is not the case with other data such as readability, usability and 
understandability. Much data is acquired through forms where the test sub-
ject is to evaluate something on a scale, e.g., from one to ten. Extracting 
this introduces noise into the data. A nine for one person maybe is more 
like a five for another. Furthermore, answers to questions for readability or 
usability depend largely on the person answering, much less than “objec-
tive” facts like defects. 

It gets even worse when there isn’t even a scale, but the questions are an-
swered in natural language. The answers are interpreted by humans and 
then transformed into the input data needed for the simulation model. This 
introduces additional noise. In any case, it is important to know who an-
swered the questions. Was it a group of senior software engineering pro-
fessionals, or rather junior persons just evaluating their first project? If this 
is not known, evaluating the answers for the current simulation model is 
very hard and not likely to yield very reliable results. 

Unknown Context 

All the problems mentioned so far have one thing in common: It is more or 
less obvious if there are any problems with the context. When deriving 
data from other sources, the dangers are clearly visible, the same applies to 
unknown test subjects or interpreted natural language answers. These dan-
gers can be discovered and accounted for, for example by comparing them 
with other data, so one bad data set does not spoil the model.  

Nevertheless, inherent to using older data is always the danger that certain 
assumptions were made at the time the data was acquired, but that this has 
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not been recorded. In this case, the context is different, but this may go un-
noticed. This is maybe the greatest danger, since it might not be obvious 
that there is a different context at all. If data taken from one context is 
mixed with data from another in the simulation model, the simulation may 
show some weird results without any indication that this is not because of 
the model, but because of the data used. 

Only very careful choosing of data can help with these problems. Experi-
ence can help detecting potential problems within the data, but not com-
pletely eliminate all dangers. Choosing data and integrating it into the 
model is critical to model quality and should be accomplished with great 
caution. 

3.6 Summary 

In addition to isolated real or virtual experiments, combining both ap-
proaches holds additional advantages in several fields of application. 
When using empirical knowledge in simulations, the simulation model can 
be refined in an iterative way by integrating the experiences from real ex-
periments held over time. Thus, more accurate predictions can be made 
with the simulation model. The model itself can already be based on real 
data acquired through controlled experiments or case studies, as opposed 
to purely artificial models in a simulation-only approach. 

The simulation model can also be expanded by using experimental results. 
Aspects of the real world not yet considered can be included in a new ver-
sion of the simulation model. This way, a model can grow to a more com-
prehensive model over time. The simulation model can also be prepared 
for later data integration, if data from real experiments is not yet available. 
By simulating appropriate real experiments, model quality can be checked. 

Using simulations for real experiments holds some more synergy effects. 
First of all, real experiments can be prioritized and scoped. This means that 
before (expensive) real experiments are held, simulations are used to de-
termine what to examine in which detail. Simulations can also help deter-
mine which kind of data is needed, so real experiments can be planned ac-
cording to actual needs, rather than intuition. Finally, simulation results 
can be used as a quick sensitivity analysis of real experiments’ results. 

As can be seen, combining real and virtual experiments holds many bene-
fits. It may not always be easy to express these benefits in numbers. How-
ever, this should not keep the software engineering community from ex-
ploiting them. Table 3.1 gives an overview over the expected benefits. 
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Knowledge Usage Benefits 
Empirical → Simulation Constructing, calibrating and validating simulation models 

Extending existing models to new areas 
Evaluating simulation models 

Simulation → Empirical Reduction of experimentation time and cost 
Online simulations (↔) Inexpensive scale-up 

Employee motivation through immediate feedback 
Visualization enhancements 
Training 

Table 3.1: Benefit overview
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4 Simulation Model Development 

4.1 Overview 

As an example for the combination of simulation and real experiments, a 
simulation model of an inspection process has been developed. The inspec-
tion process has been chosen because most of the research being done is 
situated in this area. This supplies a good knowledge basis for modeling as 
well as sufficient real experiments to calibrate and test the model. 

More precisely, the simulation model used in this work represents an ex-
periment conducted by Basili et al. in 1994/95 [BGL+96] and two replica-
tions by Ciolkowski et al. in 1995/96 [CDLM97]. The initial experiment 
and its replications provide three independent data sets to calibrate the 
model with. 

The simulation model described in this section implements the combina-
tion of real and virtual experiments described in Section 3.2. Using empiri-
cal knowledge, the simulation model is developed and calibrated. To re-
duce complexity, the model concentrates on two key factors influencing 
the inspection process. These two are the document that is to be inspected, 
and the set of reviewers available. The document is characterized through 
the attributes number of defects, size and complexity; each reviewer is 
characterized through the attributes experience, expertise, and his individ-
ual defect detection rate (iDDR) and document coverage. An overview is 
given in Table 4.1. 

Factor Attribute Description 
Document Number of Defects Absolute number of defects in the document 
 Size Document size 
 Complexity Document complexity 
Reviewer Experience Reviewer experience with reading technique, 

document type… 
 Expertise Reviewer domain expertise 
 iDDR Individual defect detection rate of reviewer 
 Document Coverage Percent of document covered by the reviewer 

Table 4.1: Overview over model attributes 

Biffl [Bif00] stated that experience and expertise influence the individual 
defect detection rate of the reviewer. Furthermore, document properties 
such as size and complexity also have an effect [BLW97]. The defect de-
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tection ratios used for model calibration must be seen in combination with 
the documents that were inspected and the set of reviewers that were avail-
able—these factors are not independent. 

The development of the simulation model followed a method that is cur-
rently being developed [RNM03]. First, the goals pursued with the model 
were defined. Then, a static process model was created that reflects the in-
spection process. This static model was used as the basis for the dynamic 
simulation model. An influence diagram captured dynamic behavior and 
interrelations. During this phase, empirical data from the experiments was 
integrated iteratively. Then, the dynamic simulation model was built using 
the simulation tool Extend and calibrated with data from the experiments. 
To enable the model for multi-document runs, some extensions to input pa-
rameter and simulation handling were made. Finally, model limitations are 
pointed out and lessons learned presented. 

4.2 Modeling Goals 

The primary goal is to develop an empirically-based simulation model that 
allows for determining the effects of PBR and ad hoc requirements inspec-
tions in specific contexts. The intended usage of the model is decision sup-
port for planning software projects and tailoring the requirements inspec-
tion process to individual environments. This can be combined with other 
decision support techniques as for example described in [RBH02]. Fur-
thermore, the model should help to reduce risks in introducing or changing 
requirements inspection processes by better forecasting their impacts. Sev-
eral simulation models for inspections processes exist (e.g., [NHM+02], 
[NHM+03]) that are mainly based on hypothetical assumptions or expert 
knowledge.  

The scientific focus was to better understand the use of quantitative em-
pirical knowledge for simulation model development. Therefore, the model 
abstracts from several details and highlights the use of empirical data and 
further results from empirical studies. Secondary goals comprise modeling 
itself as well as the practical demonstration of the methodology presented 
by Rus et al. [RNM03]. 

4.3 Analysis and Creation of the Static Process Model 

Before modeling dynamic behavior, a static process model that reflects the 
examined real-world process was developed. This can be done, for in-
stance, by descriptive software process modeling [BK01]. The static model 
of the inspection process used is depicted in Figure 4.1. It is adopted from 
the model of Münch et al. for requirements inspections instead of code in-
spections. The activities, products and roles are modeled according to 
[LD00]. It is a well-known inspection process with individual preparation 
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phases and a subsequent phase where individual defect lists are merged 
into one. Software engineering literature provides various experiments and 
studies where real team meetings are held and others where only nominal 
teams are examined. An overview can be found in [LD00]. A nominal 
team is a team that does not work together as a team, but individual defect 
lists are simply merged. This means that no real team meetings take place. 
There is no conclusive answer on whether team meetings enhance inspec-
tion results or not. The two replications of the original experiment that 
were used in this work compared real team meetings against nominal 
teams and found no increase in defect detection effectiveness. That is the 
reason why only nominal teams were considered in the simulation model. 

 
Figure 4.1: The inspection process model after [MBH+02] 

4.4 Collection and Analysis of Empirical Data 

The empirical knowledge used for developing the simulation model was 
mainly gathered from the experiments described in [BGL+96] and 
[CDLM97]. Throughout the rest of this thesis, the “original experiment” 
refers to [BGL+96], and the “replications” refer to [CDLM97]. The object 
of all experiments is a requirements document inspection process consist-
ing of an individual preparation phase and a phase where the individually 
detected defects are pooled together. The initial experiment used profes-
sional software developers from the NASA/GSFC5 Software Engineering 
Laboratory (SEL) as test subjects. They were tasked to review different 
types of documents, one from the NASA domain and one generic in na-
ture, using their usual reading technique and the perspective-based reading 
(PBR) technique. Due to time and costs constraints (the experimenters es-
timated at least $500 per subject and day), no real teams were formed. Af-
ter individual defect detection, the data gathered was pooled together ac-
cording to the nominal team approach. The original experiment was con-
ducted in two runs. After a pilot run, several changes to the documents and 
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the experimental settings were made. This is why only results from the 
second run are considered here. 

The replications took place one year later at the University of Kaiserslau-
tern. Since the subjects were all undergraduate students, only the generic 
documents were used. These were identical to the ones used in the second 
run of the original experiment. This time, PBR was compared to an ad-hoc 
approach. Furthermore, the experimenters examined whether real teams 
discovered more defects than nominal teams. 

In both experiments, PBR proved to be superior to the other technique 
used in almost all cases. Although no statistically significant effects could 
be proven, the experimental data from the replication suggested that meet-
ings do not provide synergy effects: Although usually some new defects 
were detected, there were a huge number of meeting losses (i.e., detected 
defects that were not reported in real meetings). 

Although the experiments were conducted to compare different reading 
techniques, and data collection was driven by this purpose (as opposed to 
developing and calibrating a simulation model), data like the average indi-
vidual defect detection rate or team defect detection rates could be used for 
the development of the simulation model. 

Data used for modeling included information about the individual defect 
detection rate (iDDR) of each reviewer, document defect detection rate 
(dDDR), defect detection overlap (how many defects are also detected by 
other reviewers?) between reviewers, and document size and complexity. 
To ease adoption of the model to different context, the relative importance 
of reviewer experience and expertise can also be adjusted. Finally, docu-
ment coverage allows for the consideration of time pressure. Not all the 
data that would have been helpful was collected during the real experi-
ments. They were designed to examine different reading techniques, but 
not to support simulation model development.  

When the real experiment is planned and conducted to (also) suit simula-
tion model development needs, all data considered necessary for the simu-
lation model can also be made available. This way, a good symbiosis of 
real experiments and simulation can be achieved. This represents the pre-
ferred case, however, probably not the most likely. It can be expected that 
most data stems from older experiments which were not designed to suit 
simulation needs. Thus, the data that is to be included in the model must be 
extracted from available data. While this may not be possible for all data, 
this work proved that this approach works for a real context. There was, 
however, no methodological support for deriving the data needed from the 
data available. 
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4.5 Creation of the Influence Diagram 

An analysis of the data provided by the experiments revealed a relationship 
among individual defect detection rate (iDDR), team defect detection rate 
(DDR) and reviewer know-how. The defect detection rate is defined as the 
percentage of the defects found with respect to all defects (Equation 1).  

 

iDDR indicates the individual performance of every reviewer, DDR speci-
fies team performance for one document with doubles sorted out. The ex-
periments confirmed that DDR rises with iDDR, while iDDR was higher 
with professional software developers than with undergraduate students. 

The description of the real experiments provided further information: The 
number of defects in the inspection documents was known (27/29) as well 
as the document size in pages (16/17). This results in an average of about 
1.7 defects per page. Additionally, document complexity can be deter-
mined, since the documents are publicly available. A possible measure 
could be McCabe's cyclomatic complexity measure [McC76]. On the re-
viewer side, some attributes are also known. The original experiment used 
professional software developers as opposed to undergraduate students in 
the replication. While the number of years of experience did not correlate 
to inspection performance, the professionals yielded significantly higher 
average iDDR scores than the undergraduate students (28.39% versus 
21.08%, which is a 34.68% increase). 

The model is based on average defect detection ratios; all other context in-
formation is normalized. This corresponds to the experiments, which also 
concentrate on average DDR scores. As can be seen in the influence dia-
gram (Figure 4.2), iDDR values are derived directly or indirectly from the 
context variables. Thus, by focusing on defect detection ratios, simulation 
complexity could be decreased while at the same time the context was not 
neglected. 

Figure 4.2 includes literature references for positive or negative correla-
tions in the influence diagram. References named as [A] describe relations 
I introduced to structure the model. This concerns primarily the intermedi-
ate attributes Document Difficulty, EE Level (i.e., experience and expertise 
level) and Inspector Capability. Basili et al. [BGL+96] found that the 
document reviewed significantly influences individual defect detection ra-
tios in the generic problem domain. Biffl [Bif00] found in his experiment 
that inspector's experience as well as expertise as defined in Section 4.7.2 
significantly influence inspection performance. Rising document difficulty 
lowers the inspector's defect detection ability for the specific document 
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[BGL+96], while rising experience and expertise also rises inspector capa-
bility [Bif00]: The better qualified an inspector is for the document to be 
inspected, the higher his individual defect detection rate can be expected. 

Another correctional factor (iDDR Correction Factor) needed to be intro-
duced for the calculation of the document DDR. This factor symbolizes the 
overlap of iDDR values combined for one document. Depending on the 
reading technique, the defects found by each individual reviewer may 
overlap more or less due to restrictions resulting from the chosen reading 
technique. A PBR technique focusing on certain defect classes for each re-
viewer is more likely to yield a lower overlap than an ad-hoc technique, 
where every reviewer scans the complete document for any defects. 

For the immediate model purpose, the variables describing the context 
(i.e., inspector experience and document complexity) were not mandatory, 
since the context is already reflected in the iDDR values. An adaptation of 
the model to new situations could then be done by adjusting the individual 
defect detection ratio, of course, but this value can then again only be de-
termined in costly real experiments, thereby contradicting part of the mod-
eling goal. This is why the context variables were included in the model, 
but with neutral behavior. Their potential influence is not impaired by this; 
they are just set to values that do not influence input iDDR values. To 
adapt the model to different contexts, the context variable values can be al-
tered accordingly, with this model and its experiments as a reference value. 

Document Size

Experience

Document Complexity

EE Level

Expertise iDDR Correction Factor

Document Difficulty

Inspector Capability iDDR Total DDR

+ [A]

+ [BGL+96] - [BGL+96]

+ [Bif00]
+ [A]

+ [A]

+ [A]

+ [Bif00] + [BGL+96,CDLM97]

 
Figure 4.2: The influence diagram for the simulation model 

4.6 The Dynamic Model 

As a first step towards modeling the influence diagram, variables that were 
used in the real experiments to capture real-world behavior were modeled 
(see Figure 4.2). Document Difficulty, Inspector Capability and EE Level 
are additional intermediate attributes defined in order to understand and 
describe dynamic behavior. They are not reflected in the final model as 
discrete blocks, but combined into some (more comprehensive) equations. 
Their influence remained the same, but the combination reduced the num-
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ber of blocks and connections in the model implementation significantly, 
thereby enhancing readability. 

First, the attributes included in the final model will be introduced. These 
are attributes found to have a major influence on inspection results. Scales 
to measure these attributes are provided, in order to alter their values and 
thereby adapt the model to new contexts. There are other scales that can be 
used, of course. In any case, it is possible to adapt the model to various 
concrete measures. 

4.7 Model Attributes 

A key element of modeling is choosing attributes to be included in the 
model. It should be examined very carefully which attributes of the real 
world need to be modeled to adequately represent reality, and which can 
be left out to reduce complexity without altering model behavior too much. 
The attributes chosen for this model are depicted in Table 4.1 and will be 
explained further here. 

4.7.1 Document Attributes 

Document attributes characterize the document that is to be inspected. 
Thus, their values may differ with every document. 

Number of Defects (1..n) 

The number of defects in the document influences the number of detected 
defects. In a defect-free document, no real defects can be detected, if any, 
only false positives can be expected. A false positive is a reported defect in 
an actually correct part of the document. With an increasing number of de-
fects, the number of actually detected defects can also be assumed to rise. 
A natural limit can be expected at the point where the inspected document 
contains so many errors that no sensible defect detection can be done any 
more due to the fact that it gets difficult to identify defects at all. If this is 
the case, a document should be rejected, since it is not yet ready to be sen-
sibly inspected. In this model, the number of defects is needed to model 
the effect of the inspection in terms of defect reduction. As mentioned ear-
lier, the original experiments used documents with a defect density of 
about 1.7 defects per page. 

Document Size (0..2) 

The document size influences the inspection in at least two ways. First, the 
bigger the document gets, the more time is needed to read it and perform 
the defect detection. Second, with growing document size it becomes in-
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creasingly difficult to understand it completely, thus impeding defect de-
tection [BLW97]. Since in different domains very different document sizes 
occur, it did not seem sensible to use an absolute number here. Instead, a 
relative scale is used, with 1 symbolizing an average document size (aver-
age for the domain, company and review team). Numbers below 1 mean 
that the document is smaller than usual, while numbers above 1 mean an 
unusually big document. The 1 in our model represents our reference 
document with 17 pages. Document size cannot only be measured by the 
number of pages, of course. While this might make sense for requirements 
documents, the size of code documents could be measured in LOC, for ex-
ample. 

Document Complexity (0..2) 

Document complexity influences defect detection in that it may be very 
difficult to understand the document itself and therefore to find any defects 
at all [BLW97]—on the other hand, a complex document may lead to more 
false positives than a very simple one. Thus, document complexity is a key 
attribute in the model. For quantifying this influence, the same considera-
tions as for the document size apply: In different domains, very different 
document complexities may appear. Therefore, the same relative scale as 
for document size has been chosen, with 1 symbolizing average complex-
ity and numbers below and above symbolizing lower and higher complex-
ity than usual. In order to use the simulation model in different contexts, 
comparing document complexities, e.g., using McCabe's cyclomatic com-
plexity measure [McC76] seems plausible. 

4.7.2 Reviewer Attributes 

Reviewer attributes characterize the reviewers. Each reviewer has different 
capabilities, which must be taken into account. Reviewer attributes typi-
cally change only slowly over time, e.g., with growing domain knowledge. 
The model parameters, however, need to be adjusted for each different set 
of reviewers. 

Experience (0..2) 

Experience symbolizes the reviewer's experience with inspections, the 
document type, and the reading technique chosen. It is assumed that this 
also influences inspection performance. A reviewer using a new reading 
technique may need more time for administrative tasks than a more experi-
enced reviewer. An uncommon document type may lead to confusion, 
lowering the defect detection ratio. Finally, the reading technique also in-
fluences inspection effects. For simplicity, experience is measured on a 
relative scale with 1 symbolizing average experience (in the respective 



4.7 Model Attributes 
 

 59

context), and values below and above symbolizing lower and higher ex-
perience. 

Expertise (0..2) 

Expertise takes into account the domain knowledge of the reviewer. While 
this might not be very important for some defect types, it may become ab-
solutely necessary when regarding core system functions. When there are 
only reviewers foreign to the application domain, critical defects may go 
unnoticed until late in the development process. Thus, it is expected that 
domain knowledge also influences defect detection. Since the same scale 
problems as with experience apply to expertise as well, the same relative 
scale is used here. 

Document Coverage (0..1) 

This symbolizes how much of the document can be covered by the re-
viewer in the allocated inspection time. Time pressure, for instance, can be 
expressed through this value. The values can be seen as percentage values. 
Normally, document coverage should be 1, but when time pressure inhibits 
a thorough inspection, the value can be lowered accordingly. 

Individual Defect Detection Rate (0..1) 

This depicts the defect detection rate of every individual reviewer. Mostly, 
more than one reviewer will participate in an inspection. Thus, different 
individual defect detection rates must be considered. If the reviewer's ca-
pabilities are well-known, this value can be set accordingly. If only group 
performance has been monitored so far, mean and standard deviation val-
ues may be introduced at this point. The model presented in this work was 
calibrated using mean and standard deviation values for individual defect 
detection rates.  

4.7.3 Additional Adjustment Variables 

These additional adjustment variables are deemed necessary to better de-
scribe the context of the inspection. When using a specific review tech-
nique, for example, experience with this specific technique may be more 
important than domain knowledge [Bif00]. This is reflected in the simula-
tion model through adjustment variables. If no special focus lies on one or 
more variables, all adjustment variables except for the review correction 
factor are set to 1. Lowering or raising a value increases or decreases the 
weighing of the corresponding factor relative to the other factors. This en-
ables the simulation model user to put special emphasis on single factors. 
Defect detection overlap ranges from 0 to 1. 
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Experience Importance 

This describes the importance of experience as defined in the sec-
tion “Experience”. Experience may be especially important in special in-
spection processes with tailored reading techniques or special document 
types. 

Expertise Importance 

If the software focuses on very special application domains such as avia-
tion or weapons systems, expertise may become relatively more important 
than the other factors. This situation can be reflected through this value. 

Review Correction Factor (0..1) 

The review correction factor symbolizes the overlap of detected defects of 
the individual reviewers. Thus, it can change with the reading technique. 
An ad-hoc approach would have a high overlap since no special focus is 
given on where or how to detect defects. A perspective-based approach 
would have a lower overlap. Altering this value could become necessary, 
for instance, if individual defect detection performance for a certain read-
ing technique is known, but the search fields are redefined. If the new 
search fields supposedly overlap less, this value could be increased to re-
flect this context change in the model. 

4.8 The Simulation Model 

The simulation model is described in two steps. First, the model basics are 
explained. That includes the realization of the attributes described above, 
the calculation of various values and general document and reviewer flow. 
In this stage, the inspection of only one document with one group of re-
viewers is modeled. In a second step, the model is extended to allow for 
the simulation of an arbitrary number of documents, each with a different 
set of reviewers, in one simulation run. This is described in Section 4.10. 

The model is realized as a discrete event model using the modeling and 
simulation environment Extend [Kra00]. The document is generated with 
its properties, and a set of reviewers is generated with their properties. 
Then their individual defect detection rates (iDDR) are combined into the 
total defect detection rate of the (nominal) team for the respective docu-
ment (dDDR). To illustrate the effects, the number of defects remaining in 
the document is calculated. An overview over the complete model is given 
in Figure 4.3. 
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Figure 4.3: The Extend simulation model 

The equation block labeled iDDR outputs the individual defect detection 
rate of the reviewer adjusted to the actual process context. It uses the at-
tributes depicted in Figure 4.2 and the reviewer iDDR as input parameters. 
In this instantiation of the model, input iDDR equals the block output, be-
cause the context is already reflected in the input iDDR. In order to adapt 
the model to different contexts, experience and expertise can be adjusted 
relative to each other. If an inspection requires intimate domain knowl-
edge, the importance of that factor can be raised compared to reviewer ex-
perience with the reading technique, for instance. Furthermore, individual 
experience, expertise and document coverage levels can be altered. This 
can be useful if defect detection rate data is available for groups of people, 
but not for individuals. Also, individual improvements can be reflected 
through these values. 

The equation block labeled iDDR Correction takes care of the fact that not 
all defects detected by an individual are really new defects. Some have al-
ready been found by others, some not. Since the model is based on average 
defect detection rates, the individual detection rates are decreased with an 
increasing number of reviewers. This yields a potential problem if the 
group of reviewers is very inhomogeneous. If all reviewers perform about 
the same, it does not matter which one comes first and which one last. If 
there are major differences in defect detection ratio, their starting in the 
model determines the simulation results. To eliminate this threat, several 
simulation runs with random starting numbers of the reviewers should be 
conducted and the results then averaged. 
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At a certain point, adding more reviewers does not lead to any more de-
fects discovered. Although the number of reviewers needed to reach that 
point has not been provided by the real experiments, a constraint is in-
cluded in the model that discards individual defect detection success if the 
(calculated) number of detected defects is smaller than one. After this 
check, the final adjusted defect detection rates are totaled up into the 
document defect detection rate (dDDR). For illustration purposes, the re-
maining defects are calculated last. 

A simulation run consists of the following steps: At simulation time 0, the 
document is created and its properties are set. In this work, defects were 
set to the number of defects in the reference document, while size and 
complexity were set to 1 in order not to spoil simulation results. The Get 
modules read out their respective values and provide them as an input to 
the defect detection rate calculation modules. Then the document is halted 
for the time the reviewers need to pass through the simulation. 

At simulation time 1, the first reviewer is created. The counter is needed to 
decrease the number of newly detected defects for later reviewers. Re-
viewer properties are set during reviewer creation, analog to document 
creation. Experience and expertise are set to 1, again not to spoil simula-
tion results. Throughout this work, a document coverage of 100% was as-
sumed, so the corresponding value remains 1 throughout the simulation. 
Finally, iDDR gets set to values from a random number generator initial-
ized with mean values from the reference experiments and a modest stan-
dard deviation of five percentage points of iDDR. This ensures that the 
simulation outputs a range of results in consecutive runs, so that mean re-
sults and typical variation can be identified. Experience and expertise im-
portance were both set to 1, thus not preferring any of the two factors. 

Following the setting of the reviewer properties, they are read again and 
used as inputs to various equations. The EE Level equation block adjusts 
the relative value of expertise and importance (Equation 2). 
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This result is combined with document size, complexity and coverage to an 
adjusted iDDR, which is then written back to the reviewer (Equation 3). 

 

These equations represent the corresponding parts of the influence dia-
gram. The reviewer then leaves the simulation. At simulation time 2, the 
next reviewer enters the simulation and passes through the explained 
stages. This is repeated until all reviewers have passed through the simula-
tion. Finally, the document is released, the number of remaining defects is 
written back into the document, and the document exits the simulation, 
which stops the simulation run. All results are written to a file to simplify 
multiple runs and the analysis of the results. 

Simply adding up the iDDR values calculated in this manner would, of 
course, lead to extremely high document defect detection rates, which 
could easily exceed 100%. Therefore, individual defect detection rates for 
later reviewers are adjusted. This adjustment is calculated in the iDDR 
Correction equation. Determining this equation proved to be the hardest 
part of the modeling process. The original experiments did not provide de-
tailed data about individual defect detection overlap. The only available in-
formation said that about 60% of the defects were found by more than one 
reviewer when using PBR, with a tendency to higher values when using 
ad-hoc techniques. This is not surprising, since PBR techniques try to 
overlap search fields only partially. While this did not give clear advice on 
how to decrease iDDR ratios for consecutive reviewers, it at least provided 
a general direction for defining a correctional factor. The equation was fi-
nally determined during model calibration by using data from the real ex-
periments. 

4.9 Model Calibration 

In order to determine model behavior and to calibrate the model, empirical 
data from the original experiments [BGL+96, CDLM97] was integrated. 
This is described in the following. The experiments were not designed to 
support simulation models. They were conducted to compare different 
reading techniques. Therefore, some points of special interest will be 
dwelled on in this section. 

The two main data sources were the average individual defect detection 
rate (iDDR) and the average nominal team defect detection rate for the 
complete document (dDDR). From the data published, standard deviations 
from the mean values could also be extracted. The original standard devia-
tion values were not used for model calibration, though. They were up to 
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twice as high as the absolute iDDR values measured. Using these standard 
deviations in our model created reviewer iDDR values that were too unsta-
ble for sensibly calibrating the model. Therefore, a standard deviation of 
five percent points of iDDR was used for calibration. In a real-world appli-
cation of the model, however, realistic values should be used whenever 
available. This could become especially important when worst case/best 
case inspection scenarios are to be evaluated. The value for the standard 
deviation used directly influences lowest and highest iDDR values. The 
values gathered in the real experiments are displayed in Table 4.2. 

Value 
Pilot 
usual 

Pilot 
PBR 

1995 
usual 

1995 
PBR 

Rep95 
ad-hoc 

Rep95 
PBR 

Rep96 
ad-hoc 

Rep96 
PBR 

avg. dDDR (%) 44,3 62,9 48,2 62,4 41,9 52,75 32,2 47,7 
avg. iDDR (%) 20,58 24,92 24,64 32,14 21,33 25,93 14,59 22,46 
avg. standard deviation (defects) 8,01 8,01 4,5 4,5 8,98 8,98 7,98 7,98 
avg. dDDR - 2*iDDR (%) 3,14 13,06 -1,08 -1,88 -0,76 0,89 3,02 2,78 

Table 4.2: Experiment values 

Data from the 1995 run of the initial experiment and the two replications 
only was integrated into the model. After the pilot run of the initial ex-
periment, the experimenters changed the context of the experiment. For 
example, they changed the time granted for defect detection and the place 
where the experiment took place (normal workplace → classroom setting). 
Because of this, the results of the initial and the other runs cannot be com-
pared directly and, therefore, cannot be used for model calibration. Never-
theless, there were three sets of empirical data available to calibrate the 
simulation model. Throughout the rest of this work, “experimental data” 
refers to these three data sets. 

When examining the data, it can be noticed that no matter which reading 
technique was used, the average dDDR was always about twice the aver-
age iDDR (Table 4.2). The highest deviation was 3.02 percentage points, 
with an average of 1.74. I do not believe this to be coincidence, so I used 
this fact for model calibration. 

No isolated defects were modeled. The model relied on average values for 
defect detection. This is because of two factors: First, it reduced model 
complexity. Second, there was no complete data available from all three 
experiment runs concerning individual defects. Model calibration would 
have to be done with fewer data, which seemed worse than using average 
values. 

The drawback was that relying on average values made it more difficult to 
determine overlap in defect detection. “Overlap” means defects that were 
detected by more than one reviewer. They increase individual DDR, but 
not overall document DDR. When not examining single defects, there is no 
possibility to determine how many of the defects one team member de-
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tected were already detected by others. There was, however, general in-
formation about how many of the total defects detected were found by how 
many persons. This at least indicated where to look for a correctional fac-
tor. A value was then determined for the data sets through systematic 
simulation runs with different correctional factors. 

An exponential decrease in the defect detection ratio was used. In this sce-
nario, the first reviewer’s iDDR is added fully to the total DDR, while the 
following iDDRs are decreased by a factor determined by the number of 
the respective reviewer and a review correction factor (RevCor). The ac-
tual iDDR that is added to the dDDR is calculated according to Equation 4. 

 

where Count equals the number of the respective reviewer minus one. 
When systematically testing the model with different RevCor values, a 
value around 0.64 showed the lowest average deviation between the real 
experiments and the simulation results (see Figure 4.4). 
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Figure 4.4: Deviation Experiments – Simulation 

This can only be a first calibration, of course. More data from other ex-
periments is needed to determine the validity of the equations used and the 
RevCor factor. 

4.10 Model Extensions 

After the initial model was developed and calibrated, it was extended to 
comprise a less abstract inspection process: Only few inspections consist 
only of one document examined by one group of reviewers. Usually, more 
than one document is inspected. While this could be emulated with multi-
ple runs of the simulation, it seemed not very comfortable. All input vari-
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ables would have had to be set according to the new document/reviewers 
combination for every run, thus not allowing first setting all parameters, 
and then running the simulation unattended. 

Because of this, an extended version of the model was developed. It com-
pletely contained the initial version in that it uses the same document and 
reviewer flow and calculates the values of all variables similarly. The 
changes allow for the simulation of multi-document inspections in one 
simulation run. Also, the reviewers’ iDDR values are read from a file. This 
way, each reviewer’s iDDR can be set individually. As in the basic ver-
sion, all results are written to a file. The complete model is depicted in 
Figure 4.5. 
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Figure 4.5: The complete simulation model 

4.10.1 Multiple Documents 

Document generation now is realized as a Documents program block gen-
erating document items at predefined points in time. In order to achieve a 
valid (i.e., each document is inspected by the correct number of reviewers) 
model output, document items should be created in intervals depending on 
the number of reviewers. To get an easily readable output value plot, an 
offset of maximum number of reviewers per document + 2 is recom-
mended. For example, if the maximum number of reviewers per document 
is 3 and the first document is created at simulation time 0, the subsequent 
documents would be created at simulation times 5, 10, 15,… 

The Program block also provides means to immediately set item attributes. 
This was used to set the values of Defects, Size and Complexity right at 



4.10 Model Extensions 
 

 67

document creation. This allows for pre-determining all documents with 
their parameters and then importing the data in one step into the model, in-
stead of setting various parameters in various places. 

4.10.2 Multiple Reviewer Groups 

Each document can be inspected by an arbitrary number of reviewers. This 
was modeled using a Reviewers program block. The reviewers start one 
time unit after their respective document. The iDDR values are read from a 
file. Due to the backward integration function of the DOC DDR summa-
tion block, a dummy reviewer having an iDDR of zero must run through 
the simulation after the last real reviewer. This must be considered when 
creating the reviewer and iDDR input data. Experience, Expertise and 
Document Coverage are set in the program block. It is recommended to set 
these values to zero for the dummy reviewer, to better visualize the dis-
junction of the reviewer groups. However, other values do not influence 
the simulation results. 

The iDDR Input file needs to be composed the following way. Each re-
viewer’s iDDR, RevCor, EcIm and EtIm values stand tab-separated in a 
row. Reviewer groups (=documents) are separated by a row containing 
four tab-separated zeros. Because the RevCor factor depends on the in-
spection technique, it is likely to remain constant within reviewer groups, 
but possibly changes between documents. This would be the case when 
groups of reviewers use different reading techniques on their respective 
documents. Experience and Expertise Importance values probably also 
change only between documents. Nevertheless, the simulation model al-
lows for per-reviewer settings.  

The iDDR Selector counter selects the row that is to be used from the input 
file. The zero values are assigned to the dummy reviewers. This way, they 
do not influence simulation results while the final document DDR is 
summed and then written back to the document. 

4.10.3 Miscellaneous Changes 

Some minor changes were required by the multi-document, multi-reviewer 
inspections. A DOC DDR Reset block is waiting for a document to pass. 
When a document passes this block, the DOC DDR tank and the iDDR Ex-
ponent blocks are reset to zero. This clears the way for a new document. 

The document that is being inspected needs to be held back for the time 
the reviewers are running through the simulation. This is done by the Hold 
DOC block. Unfortunately, the holding time cannot be calculated auto-
matically. This would require knowledge about the number of reviewers 
planned for each document. To simplify model usage, a single holding 
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time that is valid for all documents is defined. Corresponding with the 
document item offset, a value of maximum number of reviewers per docu-
ment + 1 is recommended. This ensures that documents and corresponding 
reviewers are correctly paired. 

After the document DDR is calculated, the document is released. The val-
ues for document DDR and remaining defects are written into the docu-
ment item, which exits the simulation after that. 

4.11 Overview of Used Empirical Knowledge 

This section gives an overview of the empirical knowledge used for simu-
lation model development, calibration and validation. It is intended as a 
hint for developing similar models and to provide a better traceability be-
tween empirical data and simulation model. The key question is: Which 
type of data was integrated at which point during development? Table 4.3 
gives an overview over used empirical knowledge. The modeling stages 
follow the methodology by Rus et al. [RNM03]. 
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Modeling Stage Data Source Usage 
Static Process 
Model Creation 

[LD00, 
MBH+02] 

Both sources did not provide empirical data. 
They were used for creating a static process 
model that represents a well-known inspec-
tion process. (→ Section 4.3) 

[Arm02] This source provided qualitative information 
on which factors influence inspections. 

[BGL+96, 
CDLM97]  

These two sources provided the reference 
data for the relations between iDDR and 
dDDR as well as general context informa-
tion.  

[Bif00] This source provided information about the 
influence of experience and expertise on the 
iDDR values as well as the possible need to 
change their relative importance. 

Influence Diagram 
Creation 

[BLW97] This source provided information about the 
influence of document size and complexity 
on the iDDR values. (→ Section 4.5) 

Dynamic Model 
Creation 

[BGL+96, 
CDLM97, 
Bif00, 
BLW97] 

The same data sources as during the crea-
tion of the influence diagram were used, 
because the dynamic model represents the 
influence diagram translated into the model-
ing environment. (→ Sections 4.6, 4.7, 4.8) 

Model Calibration [BGL+96, 
CDLM97] 

The quantitative relations between iDDR 
and dDDR were derived from these real 
experiments. Determining the value of 
RevCor and the exponential decrease in 
iDDR weighing was also done comparing 
simulation results with these sources. The 
data was used to determine model equa-
tions and as input data for calibration. (→ 
Section 4.9) 

Model Validation [BG01] This source provided empirical data with a 
slightly different context, so the model could 
be validated. The data was used as input 
data for the simulation and for comparing 
simulation results. (→ Chapter 6) 

Table 4.3: Overview over used empirical knowledge 
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4.12 Model Limitations 

The simulation model has several limitations. It describes a very abstract 
inspection process and includes only few factors. A standard inspection 
process is influenced by far more factors [Arm02]. Most of them are not 
taken into account in this model. 

This initial version of the model relies on average defect detection ratios 
only. While this seems to work fine for homogenous groups of reviewers, 
problems arise when reviewers with very different iDDRs are combined. 
With this approach for adjusting each reviewer’s iDDR, the result may de-
pend on the time each reviewer starts. By repeatedly running the simula-
tion with randomized starting times of the reviewers, an acceptable aver-
age simulation result should be reached nevertheless. 

A third limitation concerns the iDDR Correction equation. It is based 
mainly on data from the three simulated experiments, testing and intuition. 
It needs to be evaluated in other contexts, with more and less reviewers, 
and with different iDDR values. It served the purpose well in this model, 
but may need to be altered or replaced for other experiments. 

The adjustment variables’ influence is largely unknown as well. At the 
moment, all factors are included in the equations in a linear manner. This 
raises questions like “With iDDR data available for a certain document 
size, will iDDR decrease in a linear way with increasing document size?” 
These questions will need to be answered in order to allow a reasonable 
and reliable scale-up. 

Finally, the model was calibrated using data from three (similar) experi-
ments only. Although the model performed well in a first validation with 
real-world data (see Chapter 6), all equations, correction factors, and as-
sumptions of this model need to be cross-checked in order to come to a 
more generally usable simulation model. 

4.13 Lessons learned 

I have learned several important things with respect to using empirical 
knowledge during the creation of this model. A lot of information that 
would have been helpful for creating the simulation model was not avail-
able. This was not because it is difficult to gather it, but because I used 
data from experiments not designed to fit the needs of a simulation model. 
With only little more effort, the desired data could have been collected, 
which would have simplified model building a great deal. This might be an 
issue for the design of future experiments. 
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Furthermore, deriving valid equations from discrete data points as pro-
vided through experiments is also not an easy task. Especially the combi-
nation of the RevCor factor and the iDDR Correction equation proved to 
be difficult. Unfortunately, the experiments themselves could not provide 
much helpful information. This was not because of the experimental setup, 
but because of the lack of determined interrelations between influence fac-
tors and the amount of different contexts. I tried to overcome this through 
extensively testing out ideas, but I failed to provide a more systematic ap-
proach. 

The empirical knowledge I used mainly resulted from one experiment and 
two replications. Although this was considered in the design of the replica-
tions, the contexts were not completely identical. Additionally, I used em-
pirical knowledge from other empirical studies for identifying further im-
pact dependencies. The context of these studies was also different. It seems 
to be a challenging research field to investigate to which extent context 
variations are acceptable and what the consequences for the external valid-
ity of the model are (further details about threats to validity can be found 
in [Kra00]). Guidance for this topic is missing. From my point of view, a 
careful commonality analysis of the contexts could be a starting point. 

Finally, using a visual modeling tool such as the one I used proved to be a 
great help. Visualizing the model modules and their connections allowed 
for effectively developing the model. A text- or source code-based model 
would have been significantly harder to develop. 
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5 Simulation Run 

To simplify model usage in real-world environments, this sec-
tion exemplarily executes on complete simulation cycle. This includes 
model setup, a simulation run and result identification. First, the simulation 
model is set up with input data from the real experiments, and then the 
simulation is run. The three original experiments (generic problem do-
main) are simulated. For simplification, the results of both documents are 
combined as during model calibration. Finally, the results file is explained. 
All input data described here can be found in Appendix A. This should 
simplify replaying this exemplary simulation run as well as setting up 
other simulations. 

5.1 Scope of Validity of the Model 

The simulation model describes a requirements inspection process. A 
document is inspected by an arbitrary number of reviewers in a classroom 
setting. Each reviewer works independently from the others. The results of 
all reviewers are combined, but no real team meetings are held. The re-
viewers’ capability is reflected in their individual defect detection rate. 
This means that if the individual defect detection rates are known, the 
model can be used with arbitrarily capable reviewers, and if the defect de-
tection rates are unknown, assumed values can be used in combination 
with adjusting other model variables. Model calibration and validation, 
however, was done primarily with data from undergraduate students, so 
caution is advised when simulating reviewers with a highly different back-
ground.  

The simulation model assumes that there is sufficient time to thoroughly 
conduct defect detection. Nevertheless, time pressure can be accounted for 
through adjusting the document coverage value. The inspected documents 
were from a generic domain, with 17 pages, each containing an average of 
1.7 defects. Model validation suggests that a 50% increase in defect den-
sity and a 100% increase in document size do not impair model validity. 

5.2 Simulation Model Preparation 

First, the documents that will run through the simulation model need to be 
defined. This is done in the Documents block. Since three reviewers are to 
inspect each document, the maximum number of reviewers per document is 
three. Following the recommendation from Section 4.10.1, documents start 
at every 3+2=5 time units. The number of Defects is set to 28 as the aver-



5 Simulation Run 
 
 
 

 74 

age of the two documents, while Size and Complexity attribute values re-
main 1, because these document properties are already reflected in the re-
viewer iDDR values. 

Next, reviewers need to be prepared. This is done in the Reviewers block 
of the model. Every document is to be inspected by three reviewers. The 
first reviewer of every group starts one time unit after the respective 
document, with the others following one by one. Experience, Expertise and 
DOC Coverage are set to 1, because these attributes are also already re-
flected in the reviewer iDDR values. After each set of reviewers, a re-
viewer with 0 for each of the three attribute values is scheduled, as ex-
plained in Section 4.10.2. 

Finally, the iDDR Input values must be set. This is done directly in a text 
file that is read at the beginning of the simulation. The first column of the 
file contains values for each reviewer’s iDDR, the second the RevCor 
value. The third and fourth columns contain the values for Experience and 
Expertise Importance. Since only average values are available from the 
real experiments, the iDDR values for the reviewers are identical within 
groups. The data stems from the original experiments, so RevCor values 
are constant here, too. The relative weighing of experience and expertise 
remains equal because there is no special emphasis on either one. Sets of 
reviewers are divided by a row with zeros for all values. 

5.3 Simulation Results 

After setting up all necessary model parameters, the simulation can be 
started. The experiments were simulated in their timely appearance, which 
is denoted in Table 4.2, for example. The documents exiting the simulation 
contain information about the document DDR (dDDR) and the remaining 
Defects. More detailed information is recorded by the Discrete Event Plot-
ter module (see Figure 5.1). The first column records reviewer iDDR val-
ues. The standard setting only records changed values. This is why only 
six values are displayed at simulation times 1, 6, 11, 16, 21, and 26 (all re-
viewers within one group have the same iDDR values). At simulation 
times 4, 9, 14, 19, 24, and 29, the zero values from the dummy reviewers 
are recorded. 
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Figure 5.1: Simulation results plot 

The second column is not used. The third column contains the values from 
the DOC DDR holding tank at the respective times, separated by zeros 
when the tank is reset for a new document. These values can also be found 
in the SimulationResults.txt file, which is written by the File Out module. 
Here, each simulation step results in a new row. The non-zero rows contain 
the respective DOC DDR values from the third plotter column. 

The fourth plotter column contains the values calculated for the number of 
remaining defects in the document. The values are linked directly to the 
DOC DDR values from the third column. Table 5.1 gives an overview over 
simulation document DDR, remaining defects, (real-world) experiment 
document DDR and the deviation of reality and simulation. The average 
deviation between simulation results and reality is 1.99 percentage points 
of DDR. 
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Simulation dDDR Remaining 
Defects Experiment dDDR Reality - Simulation 

50,5% 14 48,2% -2,3% 
65,87% 10 62,4% -3,47% 
43,72% 16 41,9% -1,82% 
53,15% 13 52,75% -0,4% 
29,89% 20 32,2% 2,31% 
46,03% 15 47,7% 1,67% 

Table 5.1: Simulation run results overview
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6 Validation 

Since the model was developed to be used in a real-world environment, a 
test of the model was needed. This is to verify the equations derived from 
the calibration data and to evaluate model behavior under different circum-
stances. A good test data set would have similar context, but slightly 
changed compared to the calibration data. [BG01] provides such a data set. 

6.1 Simulation Model Preparation 

As a first test in a different environment, the calibrated extended model 
was tested with data from another real experiment [BG01]. The experiment 
originally analyzed the influence of team size and defect detection tech-
nique on the inspection effectiveness of a nominal team. Valid data from 
169 subjects could be collected. The subjects were all undergraduate stu-
dents with some software engineering experience. The experimenters dis-
tinguished subjects using a checklist-based approach (denoted with “C” for 
the rest of this chapter), a scenario-based approach using the user view-
point (“A”), the designer viewpoint (“D”) and the tester viewpoint (“T”). 
All experiment runs were preceded by appropriate trainings. 

Since the focus of the experiment was on reading technique mixes and 
team size, iDDR and team DDR data was only available for two-person 
teams. This creates a good test for the calculation of the document DDR 
value. The knowledge of the test subjects can be compared to the subjects 
from the replications used for calibration, since both were undergraduate 
students. In both cases, there was a classroom setting. The inspected 
document was a requirements document as well. It was about twice as lar-
ge (35 compared to 16/17) as the calibration documents and contained 
about three times as many defects (86 compared to 27/29). This makes for 
an average of 2.46 defects per page, which is 45% higher than the calibra-
tion documents (1.7). So, there are context changes, but only slight ones so 
the model may perform well in the changed context as well. 

For testing purposes, only combinations of two reviewers using the same 
reading technique were entered into the model. This should prevent spoil-
ing simulation results due to combining different reading techniques. 
Translated into model parameters, this means that four equal documents 
are inspected by two reviewers each: First AA (two “A” reviewers), then 
TT, CC, and finally DD. All other parameters kept their original values, 
including RevCor. The specific values of all simulation parameters can be 
found in Appendix B. 
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6.2 Simulation Results 

After preparation, the simulation was run. Four documents were inspected 
by two reviewers each. The results can again be found in the Simulation-
Results.txt file and, more detailed, in the Discrete Event Plotter module. 

The simulation run resulted in document DDR values very close to the ex-
periment values. Table 6.1 gives an overview. The rows contain the values 
for the AA, TT, CC, and DD reviewer groups. The average deviation be-
tween simulation results and reality is 1.1 percentage points of DDR, 
which equals a maximum deviation of 3.3 percent. This is a very good re-
sult, suggesting that the simulation model indeed decently reflects reality. 

Simulation dDDR Remaining 
Defects Experiment dDDR Reality - Simulation 

26,24% 63 27,0% 0,76% 
24,11% 65 25,6% 1,49% 
32,96% 58 33,5% 0,54% 
24,11% 65 25,7% 1,59% 

Table 6.1: Model validation results overview
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7 Conclusions 

7.1 Summary 

This work presented a discrete-event simulation model of an inspection 
process. The model is based on empirical data from an inspection experi-
ment at the NASA/GSFC Software Engineering Laboratory and two repli-
cations at Kaiserslautern University. The experiments provided data about 
average individual defect detection rates of the reviewers and average total 
team defect detection rates. While the experiments examined both NASA-
specific and generic type documents, only the generic part was considered 
for the model. 

The simulation model reconstructs the inspection process in an abstract 
form. Several adjustment variables allow for future adaptation of the 
model to different contexts. The model itself is based on average defect de-
tection ratios. 

The first chapter provided an introduction into this work. The second chap-
ter gave an overview about empirical software engineering and introduced 
and structured different types of real and virtual experiments. The third 
chapter explained the three main possibilities of combining real and virtual 
software engineering experiments, and pointed out typical problems that 
can be expected when doing so. 

The fourth chapter implemented an exemplary simulation model using 
empirical knowledge from real experiments. This was done following a 
methodology proposed by Rus et al. [RNM03]. All modeling steps are ex-
plained in detail, as well as an extension to better support real-world appli-
cation of the model. Model limitations and lessons learned round off the 
chapter. The fourth chapter serves as a guide to creating other models. Fi-
nally, an exemplary simulation run is described in the fifth chapter, with 
detailed explanation of the steps necessary for setting up the model and in-
terpreting simulation results. Chapters six and seven provide a real-world 
model test and an outlook to one possible usage of the model. 

The model results lead to the conclusion that the model does represent re-
ality to a certain degree. Nevertheless, it should not be forgotten that many 
details were abstracted from. Additionally, only three real experiments 
were used as calibration data. However, the model performed well in a first 
test with real-world data. It has become clear that integrating empirical 
data into models is a feasible way to obtain good simulation models. Fur-
thermore, the methodology introduced by Rus et al. [RNM03] provides a 
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systematic help for developing the model. Although the method is intended 
for modeling larger processes from real-world businesses, the suggested 
steps towards a model helped in systematically developing the model. Of 
course, some steps were left out, e.g., customer interviews. Nevertheless, 
the method proved to support modeling processes in practice. 

It took about three person weeks to develop the simulation model, includ-
ing the initial calibration and the extensions for the multi-document, multi-
reviewer capabilities, with about one extra week for tool familiarization. 
An arbitrary amount of time can be spent for further calibration with dif-
ferent data, of course. Up to now, no information is available on whether 
the model will pay off, and how many real experiments need to be replaced 
by simulations until break-even. This is also closely related to the reliabil-
ity of the simulation results. 

Using empirical knowledge during simulation model development pro-
vided several advantages. While the static model can be developed using 
expert knowledge, determining the quantitative relations seems rather dif-
ficult without real-world data. Using the same analogy as in Section 3.2.5, 
the static process model is the black-and-white photograph, whereas the 
empirically enriched dynamic model represents the color video. The same 
advantages apply for calibration and model adaptation: When the process 
context changes, e.g., because other employees are conducting the inspec-
tion, this change can easily be reflected in the simulation model through 
varied input parameters. An example for this is given in Chapter 6. Finally, 
the incremental approach is supported well, too. The first raw version of 
the model presented in this thesis was developed using empirical knowl-
edge from the original experiments only. When relations had gotten 
clearer, more data from the other experiments was included to refine the 
model. Ultimately, this approach led to the multi-document, multi-
reviewer simulation model. 

Several problems appeared during modeling and integration of empirical 
knowledge. The original experiments did not provide all the data that 
would have been helpful for the model. Also, deriving valid equations 
from discrete data points is not an easy task and requires extensive explor-
ative studies. 

7.2 Further Usage of the Simulation Model 

As already mentioned earlier, simulations can be used to evaluate (slight) 
context changes in experiments. One experiment may provide data for a 
certain context, another one for a slightly different context. Using simula-
tion technology, these two isolated spots may be expanded and combined 
into a larger field where certain predictions can be made through simula-
tions. 
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Figure 7.1 depicts this situation. Two real experiments supply information 
about the areas denoted with “A”. Although this is certainly valuable in-
formation, it only concerns isolated spots in the much larger field of possi-
ble effects. Now, through replicating each isolated real experiment using 
simulation, these areas may be expanded and enlarged through slight varia-
tion of simulation parameters. This could lead to decent knowledge about 
the “B” areas. Since it has not been gained through real experiments, it is 
only reliable to a certain degree. Determining this degree (“The statements 
in area “B” are true with a probability of 0.8”) could be a field of future re-
search. 

Combining several real experiments with simulations could lead to an even 
larger area of understanding, denoted with “C” in Figure 7.1. Isolated data 
bits could serve as simulation input to cover a larger area. Of course, the 
degree of trust for the “C” area would probably be lower than for the “B” 
areas. Nevertheless, there was at least some information for an area that 
was completely uncharted before. 

This is only one possible use of the combination of real experiments and 
simulation. A lot of research is still necessary before a map like Figure 7.1 
can be drawn quantitatively. Combining different maps into one single, 
more comprehensive model of the software development process requires 
further research. Nevertheless, the benefits seem promising, so this goal 
should be pursued further. 

C
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Figure 7.1: Expanding understanding of parameter change effects  
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7.3 Outlook 

A possible direction for future research concerning the model itself would 
be the iDDR Correction/RevCor area. More data from different experi-
ments is needed to determine the validity of the proposals presented in this 
work. Another important direction would be to explore the possibilities of 
adapting the model to different contexts. Here, especially the integration of 
the “adjustment variables” could be enhanced. Generally, more knowledge 
about the quantitative relations of influence factors is needed. 

Other open research questions concern better methodological support for 
combining empirical data and simulation modeling. As an example, con-
trolled experiments could be designed specifically for simulator develop-
ment, for example. When conducting case studies, simulation support 
could be improved by recording more context and individual data. This 
could lead to a new and advanced type of experimental laboratory that uses 
process simulation as a virtual capability. 

Finally, determining the reliability of the results gained through simulation 
as addressed in Section 7.2 is important for the usage of simulation results. 
To what degree do they actually match reality, how much do they typically 
differ? Questions like these need to be answered in order to take full ad-
vantage of the combination of real experiments and simulation, and to ana-
lyze the potential pay-off of the simulation model. 
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Appendix A: Simulation Run Data 

Output time Defects Size Complexity 
0 28 1 1 
5 28 1 1 
10 28 1 1 
15 28 1 1 
20 28 1 1 
28 28 1 1 

Table A-1:  Documents input 

 

Output time Experience Expertise DOC Coverage 
1 1 1 1 
2 1 1 1 
3 1 1 1 
4 0 0 0 
5 1 1 1 
6 1 1 1 
7 1 1 1 
8 0 0 0 
10 1 1 1 
11 1 1 1 
12 1 1 1 
13 0 0 0 
15 1 1 1 
16 1 1 1 
17 1 1 1 
18 0 0 0 
20 1 1 1 
21 1 1 1 
22 1 1 1 
23 0 0 0 

Table A-2: Reviewers input 



Appendix A 
 
 
 

 92 

iDDR RevCor EcIm EtIm 
0,2464 0,64 1 1 
0,2464 0,64 1 1 
0,2464 0,64 1 1 
0 0 0 0 
0,3124 0,64 1 1 
0,3124 0,64 1 1 
0,3124 0,64 1 1 
0 0 0 0 
0,2133 0,64 1 1 
0,2133 0,64 1 1 
0,2133 0,64 1 1 
0 0 0 0 
0,2593 0,64 1 1 
0,2593 0,64 1 1 
0,2593 0,64 1 1 
0 0 0 0 
0,14585 0,64 1 1 
0,14585 0,64 1 1 
0,14585 0,64 1 1 
0 0 0 0 
0,2246 0,64 1 1 
0,2246 0,64 1 1 
0,2246 0,64 1 1 
0 0 0 0 

Table A-3:  iDDR input
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Appendix B: Validation Data 

Output time Defects Size Complexity 
0 86 1 1 
4 86 1 1 
8 86 1 1 
12 86 1 1 

Table B-1:  Documents input 

 

Output time Experience Expertise DOC Coverage 
1 1 1 1 
2 1 1 1 
3 0 0 0 
5 1 1 1 
6 1 1 1 
7 0 0 0 
9 1 1 1 
10 1 1 1 
11 0 0 0 
13 1 1 1 
14 1 1 1 
15 0 0 0 

Table B-2: Reviewers input 

 

iDDR RevCor EcIm EtIm 
0,16 0,64 1 1 
0,16 0,64 1 1 
0 0 0 0 
0,147 0,64 1 1 
0,147 0,64 1 1 
0 0 0 0 
0,201 0,64 1 1 
0,201 0,64 1 1 
0 0 0 0 
0,147 0,64 1 1 
0,147 0,64 1 1 
0 0 0 0 

Table B-3:  iDDR input
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Appendix C: Terminology 

Descriptive Process Model 
A process model that is derived from the actual process. It describes the 
current process as it is seen by the modeler. 

DDR 
Defect detection rate. The defect detection rate is defined as the percent-
age of the defects found with respect to all defects. 

Experience Factory (EF) 
The Experience Factory provides a methodological model for the storage 
of knowledge gained, for example, in QIP circles. It contains an experi-
ment database and project databases. The experience database contains 
process models, product models, project plans and other packaged infor-
mation. Each project database contains “raw” products and measurement 
data. After project completion, this knowledge is analyzed, packaged and 
added to the experience database. 

Experiment 
A test, trial or tentative procedure policy; an act or operation for the pur-
pose of discovering something unknown or of testing a principle, suppo-
sition, etc.; an operation carried out under controlled conditions in order 
to discover an unknown effect or law, to test or establish a hypothesis, or 
to illustrate a known law [Bas92]. 

iDDR 
Individual defect detection rate. This describes the percentage of defects 
that a reviewer detects of all defects in a document. 

Model 
Abstraction, usually a simplification, of a real or imaginary system. The 
model represents only the aspects of the system deemed important for the 
current purpose. In most cases, this is only a fraction of the actually ex-
isting aspects. 

Object, Experimental 
The object of interest that is to be investigated in the experiment. 
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Process 
Number of partially ordered steps to reach a goal. It may be refined into 
sub-processes. 

Prescriptive Process Model 
A process model that provides a plan that determines the course of ac-
tion. A prescriptive process model is derived from theory and often sym-
bolizes the ideal process and therefore needs to be adapted to reality. Ex-
ample: The waterfall process model. 

Subject, Experimental 
Since software engineering is a human-based profession, humans need to 
carry out the experiment tasks. In this context, they are called experimen-
tal subjects. 

Treatment 
Single experimental run with specifically set parameters. 

QIP 
The Quality Improvement Paradigm has been introduced in 1984 
[BW84] as a result of the research effort of NASA SEL and the Univer-
sity of Maryland, Department of Computer Science. QIP supports sys-
tematic planning and executing processes as well as analyzing the results 
and packaging the knowledge gained for reuse. QIP describes a methodo-
logical model for advanced learning in software organizations. 

Research Domain 
Well-defined science area where new insights are sought for by system-
atic effort. A number of research objects are identified by defining a re-
search domain. Example: Software Engineering. 

Virtual Laboratory 
Controlled environment for conducting virtual experiments in a research 
domain. The (virtual) research object consists of a model of the real re-
search object. 

Virtual Experiment 
Experiment where the research object is recreated (modeled) and exam-
ined (simulated, visualized) in a computer environment. 




