
Establishing and Maintaining Traceability 
Between Large Aerospace Process Standards 

 
Ove Armbrust, 

Alexis Ocampo, Jürgen Münch 
Masafumi Katahira, 

Yumi Koishi, Yuko Miyamoto  
Fraunhofer Institute for 

Experimental Software Engineering (IESE) 
Fraunhofer-Platz 1, 67663 Kaiserslautern 

Germany 

Japanese Aerospace Exploration Agency 
2-1-1 Sengen, Tsukuba, Ibaraki 

305-8505 Japan 
{katahira.masafumi, koishi.yumi, 

{armbrust, ocampo, muench}@iese.fhg.de miyamoto.yuko}@jaxa.jp 
 

 
Abstract 

 
The aerospace domain is known for its emphasis on 

product quality, since hardware or software failures 
may have potentially catastrophic consequences. 
Therefore, numerous standards govern space software 
development. In this paper, we present an approach 
for systematically establishing and maintaining trace-
ability between software development standards. It 
augments the standards’ word processing files with 
additional meta-information, thereby making them 
accessible and understandable for programs, so that a 
database can be used for advanced analyses. Addi-
tionally, we present experience collected during appli-
cation of the approach at the European Space Agency 
(ESA) and the Japan Aerospace Exploration Agency 
(JAXA). 
 
1. Introduction 
 

The aerospace domain places great emphasis on the 
quality of both hardware and software, in order to sat-
isfy rigorous security, safety, and reliability require-
ments. The application of suitable, well-described 
standards is one generally accepted way of achieving 
the desired quality. Such standards often come in the 
form of text documents processed in word processors 
such as Microsoft Word or OpenOffice.org Writer. 

Since the subject covered is quite vast, a single 
standard is usually not sufficient to cover all topics. 
Therefore, a multitude of hierarchical, interrelated 
standards is a common condition. Examples of such 
standards include the ones published by the European 
Cooperation for Space Standardization (ECSS) [1] on 
behalf of the European Space Agency (ESA). The 
ECSS standards contain requirements for the develop-
ment and management processes that any organization 

contracted by ESA must obey. Within ECSS, three 
series of standards govern the engineering processes (E 
series), the quality assurance processes (Q series), and 
the project management processes (P series). Other 
examples are the corresponding U.S. National Aero-
nautics and Space Administration (NASA) standards 
[2] or the ones prepared by the Japan Aerospace Ex-
ploration Agency (JAXA). 

The hierarchical, heavily interrelated architecture of 
such standards poses some major challenges for proc-
ess engineers. For example, tailoring individual stan-
dards becomes very complicated because of their 
relationships to other, possibly dependent standards. 
Evolving and maintaining the standards is equally 
challenging, because the dependencies of individual 
standards must be respected. In many cases, there must 
also be some sort of formal proof of compliance to a 
superior standard, e.g., when an organization-specific 
standard is developed. Finally, the application of ad-
vanced concepts such as process lines [3] [4] [5], 
which aims at transferring product lines concepts to the 
process world, also requires a large degree of control 
over the standards. 

What is required for all these activities is detailed 
and high-quality traceability between entities of the 
individual standards. Establishing and maintaining this 
traceability is a labor-intensive, manual task, which is 
further complicated by the standard’s representation as 
word processing documents. Therefore, the question 
we address in this paper is how traceability in a hierar-
chical, multi-standard environment can be established 
and maintained in a systematic, non-intrusive manner. 

The paper is organized as follows. Section 2 pro-
vides a brief overview of existing approaches that seek 
an answer to this question. Section 3 presents our 
traceability approach, Section 4 outlines the benefits 
expected from its application. Section 5 presents two 



case studies in which the approach has been used, as 
well as their results with respect to the expected bene-
fits. Finally, Section 6 draws some conclusions and 
gives an overview of future work.  
 
2. Related work 
 

A word processing approach similar to the one pre-
sented in this paper, but applied in a totally different 
context, is described in [6], where an XML editor was 
developed for editing legislative text. The XML format 
allowed processing such text and extracting a set of 
structured data (called metadata: act type, number, 
publication date, etc.) for different purposes. 

Commercially available tools such as DOORS [7] 
support arbitrary traceability of software requirements. 
In our case, it was mandatory to keep the word proc-
essing files as working documents in order to allow 
editing and review by a variety of stakeholders. 

In the software engineering community, traceability 
recovery from existing artifacts is increasingly impor-
tant. Several approaches, for example based on Latent 
Semantic Indexing [8] or Ontologies [9], seek to assist 
humans with their tasks.  

The need for an approach to engineering standardi-
zation in the aerospace domain is explained in [10]. An 
assessment model for assessing process compliance to 
standards has been developed and is known under the 
name of SPICE for Space (S4S) [11]. 

Traceability amongst different standards is espe-
cially important in software process line environments 
[3] [4] [5], where multiple variants are derived from 
one common core standard. 
 
3. Database-supported traceability 
 

For the rest of this paper, we assume that our mis-
sion is to establish traceability between a superior 
(“master”) and a derived (“slave”) standard. In order to 
achieve our objective of providing a systematic, non-
intrusive way of establishing and maintaining such 
traceability, we propose the following steps: 
(1) Define traceability rules. 
(2) Augment the relevant documents with meta-
information. 
(3) Make pieces of information within the documents 
identifiable for programs through the use of styles. 
(4) Establish traceability between the standards. 
(5) Create and maintain a synchronized representation 
of the augmented documents in a database by process-
ing their XML representation. 

(6) Use the database representation to aggregate, ana-
lyze, and visualize the information gathered from the 
documents. 
 
3.1. Define traceability rules 
 

In order to control traceability between the stan-
dards, we propose defining traceability rules. A trace-
ability rule describes allowed operations when deriving 
the slave from the master standard. For example, one 
such operation is to modify (or tailor) an entity. In this 
case, the traceability relationship between the slave 
and the master entity would be of the type “Tailored” 
(T). When analyzing traceability, this relationship in-
dicates that the referenced entity is contained in both 
master and slave standards, but was modified in the 
latter. 

Other relationships could be “Tailored Out” (TO) or 
“Unchanged” (U), indicating that the respective entity 
was removed or copied unchanged from the master to 
the slave standard. In the T and TO cases, some kind 
of explanation must often be given as to why this en-
tity was modified or removed. We capture this infor-
mation as a comment to the relationship. 

 
3.2. Augment documents with meta-
information 
 

The next step ensures that the traceability informa-
tion collected remains valid throughout the document’s 
lifecycle. Since standards are highly structured docu-
ments, using sections as traced objects seems reason-
able, but yields a major problem: Both the section 
number and its title may change. This means that these 
cannot be used to identify a section. We therefore pro-
pose adding a table with some additional meta-
information to each section, which enables us to iden-
tify sections at any time. 

 
Table 1. Example of a meta-information table 

 
Table 1 shows an example of such a meta-

information table. The “ID” is a unique, invariant ID 
that identifies the section. The “Change log” allows 
editors to describe the changes they made to the sec-

Meta-information 
ID  invariant ID of the respective section 
Change log description of changes 
Reviewer 
comments 

reviewer feedback 

Traceability 
Master ID Status Comment 

master section ID {U, T, TO} comment on status 



tion with respect to its previous version – thus provid-
ing a very detailed record of all modifications to the 
document. “Reviewer comments” will be used by re-
viewers to give feedback on the respective section. The 
“Traceability” part of the table holds the information 
on which parts of the master standard the respective 
section is related to, the traceability status, and any 
comment explaining the status, e.g., what was changed 
with respect to the master standard and why (in the 
case of a “T” status). 

 
3.3. Make information program-identifiable 
 

Once the sections can be identified, we need to be 
able to identify certain types of information within the 
document. For humans, it is obvious that a piece of 
text such as “Expected output: functional require-
ments” denotes a work product that is expected to be 
produced at this point. For a program, however, this is 
not the case. Therefore, we propose providing addi-
tional help to a program so that it can identify different 
types of information through the use of styles. 

In modern word processors, styles are used to de-
fine the formatting of a piece of text. For example, in 
this paper, the style “Heading 1” is defined as 12-point 
Times bold font. This style is applied to all level-1 
headings, effectively telling the word processor to dis-
play all such headings in bold, 12-point Times. While 
this makes it simple to give documents a consistent 
look, it also provides a very useful side effect: The 
word processor memorizes that a certain piece of text 
is assigned the “Heading 1” style. 

This, in turn, is extremely helpful when a program 
is supposed to analyze the text and extract information 
from it. For example, it now becomes possible (and 
actually simple) to extract all level-1 headings from 
this document – by simply extracting all text that is 
assigned the “Heading 1” style. In the case of our stan-
dards, we assigned all inputs for an activity a style 
called “Input” and all outputs a style called “Output”, 
enabling us to extract this information from the docu-
ment later. 

 
3.4. Establish traceability 
 

Now that the documents have been prepared, we are 
able to establish, for every section of the slave stan-
dard, traceability to the master standard. Even though 
this is a human-centered task, appropriate tool support 
can help speed up the process [12]. Nevertheless, it 
requires understanding both master and slave sections 
in order to evaluate whether (a) they have any relation-
ship at all and (b) if so, what kind or relationship (U, 

T, TO) this is. Our approach alleviates this problem 
partially by enabling editors to record the traceability 
within the respective section (see Table 1, “Traceabil-
ity” part) instead of in a different document. 
 
3.5. Create and maintain synchronized data-
base representation of documents 

 
Now all preparatory work is complete. The next 

step is to create a database representation of the docu-
ments. Saving word processor files in XML format 
makes them accessible to external tools such as XML 
parsers. We used one such parser to extract the rele-
vant information. Essentially, we instructed the parser 
like this: “For every activity description (i.e., section), 
extract its ID, title, heading number, change log, re-
viewer comments, and traceability information. Addi-
tionally, extract all inputs and outputs. Write all the 
information to the database.” All this was accom-
plished with a few hundred lines of Python code [13]. 
What we got in return was a 1:1 representation of the 
standard in our database – ready to be analyzed. Every 
time the standard is edited, its database representation 
is updated, so the two are always synchronized. 
 
3.6. Aggregate, analyze, visualize 
 

Now that we have the essence of our standard in a 
program-interpretable form, what can we do with this? 
Aggregate data, for example. Questions like “Which 
outputs are created during the requirements elicitation 
phase?” are quickly answered by a single database 
query. It is also possible to get a quick overview of the 
traceability status (which parts of the standard are 
highly tailored, which ones are tailored out, …). We 
can also check for inconsistencies (e.g., outputs that 
are required, but never produced anywhere) or create 
visual representations of the standard (see Figure 1). 

 

 
Figure 1. Standard visualization example 

 
4. Expected benefits 
 

We expect a number of benefits from the approach 
taken. First, and most important, we expect to continue 



using standard word processing software such as Mi-
crosoft Word or OpenOffice.org Writer. This is espe-
cially important, since the editors of standards often 
use these tools. Forcing them to use other, specialized 
tools would probably lead to low acceptance of any 
such solution and make other activities such as reviews 
or information exchange more complicated. 

Second, we expect significant advantages concern-
ing internal (i.e., intra-standard) consistency. For ex-
ample, if a program can identify different kinds of 
artifacts and their relationships, it can also check 
whether some designated illegal conditions such as 
orphaned outputs exist. Therefore, we expect that we 
can prove the absence of some of these illegal condi-
tions through automated checks. 

Third, we expect similar benefits concerning exter-
nal (i.e., inter-standard) consistency. For example, we 
expect to be able to guarantee that every entity in the 
master standard is considered, and that for every slave 
entity, it is clearly defined which master entity it corre-
sponds to. Thus, we expect to be able to guarantee that 
no entity is left behind. 

Finally, the database approach promises a number 
of further benefits, such as transparency on the degree 
of tailoring (how many entities were removed/added/ 
modified), on the implications of changes to one stan-
dard to other, derived standards through the traceabil-
ity information, and on standard quality through the 
automated consistency checks and, hence, better di-
rected reviews by humans. 
 
5. Case studies 
 

We applied the approach described in two different 
environments. The first application was at ESOC, the 
European Space Agency’s Ground Segment. Trace-
ability was established between ESA’s software stan-
dards (ECSS E-40b, Q-80 and a number of M 
standards) and ESOC’s tailoring of these standards for 
Ground Segment work. The ECSS standards were 
available in PDF form. ECSS states requirements that 
processes in ESA projects must comply with, in our 
case about 1,600 of them. 

ESOC’s tailoring of ECSS is called SETG (Tailor-
ing of ECSS Software Engineering Standards for 
Ground Segments in ESA) [14] and consists of two 
OpenOffice.org Writer/ Microsoft Word files describ-
ing the activities and artifacts (SETG A and B), one 
file describing the document templates (SETG C), and 
one file containing all traceability information (SETG 
D). Traceability was established between ECSS re-
quirements and SETC A and B, which together have 
about 110 content pages. Within ECSS, every re-

quirement was traced, together with expected outputs 
and their respective reviews. Traceability targets 
within SETG were activities (e.g., “Determine Inter-
face Requirements”) and outputs. Thus, for every re-
quirement and expected output within ECSS, ESOC is 
able to name the respective activity and output that 
realizes the ECSS demands. 

The second application was at the Japanese Aero-
space Exploration Agency (JAXA). JAXA maintains a 
hierarchical standards architecture. From level-1 stan-
dards such as ISO/IEC 12207 [15] or ECSS, the ge-
neric JAXA level-2 software development standard is 
derived. The level-2 standard, in turn, is used as a basis 
for a number of level-3 standards, which are domain-
specific, e.g., for satellites, launch vehicle, ground 
segment. These domain-specific standards are further 
tailored for specific projects (level 4). So far, we have 
been working on level-2 and level-3, with expansion to 
level-1 and level-4 standards planned for the future. 

All JAXA level-2 and level-3 standards were avail-
able as Microsoft Word documents. Traceability was 
done per activity and per input and output in both the 
level-2 and the level-3 standards. Since this project has 
not been completed yet, all experience is preliminary, 
but points out important trends nonetheless. 

Considering our expected benefits, we can fully 
confirm our first expectation (“continue using standard 
word processing software”). For the editors of the stan-
dards, the additional table per section for the meta data 
and the modified form of writing down inputs and out-
puts were only minor modifications to their mode of 
operation. Especially recording the traceability infor-
mation directly within the respective section / next to 
the respective artifact was by far more user-friendly 
than any external spreadsheets or similar solutions. Not 
using any special tools allowed the extended workflow 
(international reviews, information exchange, etc.) to 
function as usual. 

Our second expectation (“significant advantages 
concerning intra-standard consistency”) was also fully 
met. For example, automated checks revealed a num-
ber of inconsistencies within the product flow, such as 
artifacts being used, but never produced before, or vice 
versa. Detecting all such inconsistencies in a standard 
with dozens of activities on multiple hierarchy levels 
and hundreds of inputs and outputs manually con-
sumes extreme amounts of effort and most probably 
still misses some inconsistencies. An automated check 
took only seconds and detected all such inconsistencies 
for sure – thereby relieving human reviewers of this 
boring and tedious task. 

Finally, our third expectation (“similar benefits con-
cerning inter-standard consistency”) did not disappoint 
us, either. Through database analyses, we could, in 



fact, prove that every entity of the master standard was 
accounted for (i.e., had at least one incoming link of 
type T or TO or U). Similarly, we could prove for 
every slave entity that its traceability to the master 
standard was established (i.e., it had at least one outgo-
ing link of type T or TO or U). During approval of the 
SETG standards by ESOC’s Engineering Standardiza-
tion Board (ESB), the minute traceability reports for all 
ECSS requirements simplified the approval process 
significantly. The JAXA traceability project is not yet 
at such a point, but we expect it to yield similar bene-
fits. 

We encountered a number of additional benefits, 
which we will only mention here due to space restric-
tions. During the JAXA project, we created a very sim-
ple visualization of the intra- and inter-standard 
relationships (see Figure 1), which helped engineers 
understand the complexity of the standards. When one 
standard was changed, we could immediately name the 
sections of other standards that must also be reviewed 
because of this change. The guaranteed absence of 
certain types of inconsistencies and, hence, the ability 
to focus reviews on aspects that really require human 
understanding led to an increased standard quality – 
although it is difficult to quantify. Also, the integration 
of comment fields for standard reviewers into each 
activity description of the standard simplified the col-
lection and aggregation of the review comments. 
 
6. Conclusions and future work 
 

We have presented a systematic, non-intrusive ap-
proach for establishing and maintaining traceability 
between software standards that are represented as 
word processing documents. By augmenting these 
documents with additional information and by making 
individual pieces of information identifiable for pro-
grams using styles, we were able to create a database 
representation of the standard, which we then used for 
advanced analyses and visualization. 

The approach fully satisfied our expectations, and 
provided even more benefits than initially anticipated. 
The document-based traceability records were espe-
cially helpful and user-friendly. We have only just 
begun to explore the powerful analysis capabilities 
provided by the database representation of the stan-
dards. Automated consistency checking relieved hu-
man reviewers of some boring and error-prone tasks, 
so that they could concentrate their attention on other 
tasks that required human understanding. The case 
studies indicated that the approach is feasible for large 
standards, such as those for the aerospace domain. 
From our experience, we expect the approach to work 

as well in other domains with adequately documented 
process standards. 

In the future, we will continue exploring the possi-
bilities provided by the database representation of the 
standards, and further improve the support for standard 
editors through reports on more issues. 

 
7. References 
 
[1] European Cooperation for Space Standardization, 
http://www.ecss.nl/, last visited 2009-01-21. 
[2] NASA Technical Standards Program, 
http://standards.nasa.gov/default.taf, last visited 2009-01-21. 
[3] H.D. Rombach, “Integrated Software Process and Prod-
uct Lines”, Lecture Notes in Computer Science 3840/2006, 
Springer Berlin / Heidelberg, 2006. 
[4] O. Armbrust, A. Ocampo, “Software Process Lines and 
Standard Traceability Analysis”, 7th Workshop of Critical 
Software, January 14-15, 2009, Tokyo, Japan. 
[5] O. Armbrust, M. Katahira, Y. Miyamoto, J. Münch, H. 
Nakao, A. Ocampo, “Scoping Software Process Models - 
Initial Concepts and Experience from Defining Space Stan-
dards”, International Conference on Software Process 
(ICSP), May 10-11, 2008, Leipzig, Germany. 
[6] M. Palmirani, R. Brighi, “Metadata for the legal do-
main”, 14th International Workshop on Database and Expert 
Systems Applications, Springer Verlag, Berlin Heidelberg 
New York, 2003, pp. 553- 558. 
[7] Telelogic DOORS, http://www.telelogic.com/, last vis-
ited 2009-01-10. 
[8] A. de Lucia, F. Fasano, R. Olivetto, G. Tortora, “En-
hancing an artefact management system with traceability 
recovery features“, 20th IEEE International Conference on 
Software Maintenance (ICSM), Chicago, IL, USA, 2004. 
[9] Y. Zhang, R. Witte, J. Rilling, V. Haarslev, “An Ontol-
ogy-based Approach for the Recovery of Traceability 
Links”, 3rd International Workshop on Metamodels, Sche-
mas, Grammars, and Ontologies for Reverse Engineering 
(ATEM), Genoa, Italy, 2006. 
[10] J.-L. Cendral, M. Merri, R. Choda, “Engineering Stan-
dardization”, European Space Agency Bulletin 122, 2005. 
[11] A. Cass, C. Völcker, L. Winzer, J.M. Carranza, A. Dor-
ling, “SPICE for SPACE: A Process Assessment and Im-
provement Method for Space Software Development”, 
European Space Agency Bulletin 107, 2001. 
[12] A. de Lucia, R. Oliveto, G. Tortora, “Assessing IR-
based traceability recovery tools through controlled experi-
ments”, Empirical Software Engineering 14 (1), Springer 
Netherlands, 2009, pp. 57-92. 
[13] M. Lutz, “Programming Python”, 2nd Edition, O'Reilly 
& Associates, Sebastopol, California, USA, 2001. 
[14] BSSC Guides and Reports, http://www.esa.int/TEC/ 
Software_engineering_and_standardisation/ 
TECT5CUXBQE_2.html, last visited 2009-01-21. 
[15] International Organization for Standardization, ISO/IEC 
12207:1995, Geneva, Switzerland, 1995. 


