

1

Scoping Software Process Lines

Ove Armbrust1, Masafumi Katahira2, Yuko Miyamoto3, Jürgen Münch1,
Haruka Nakao4, Alexis Ocampo1

1Fraunhofer Institute for Experimental Software Engineering (IESE),
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

2,3Japan Aerospace Exploration Agency, 2-1-1, Sengen, Tsukuba, Ibaraki, 305-8505, Japan
4Japan Manned Space Systems Corporation, 1-1-26, Kawaguchi, Tsuchiura, Ibaraki, 300-0033, Japan

1{armbrust, ocampo, muench}@iese.fraunhofer.de
2katahira@computer.org

3miyamoto.yuko@jaxa.jp
4 haruka@jamss.co.jp

Abstract. Defining organization-specific process standards by integrating, harmonizing, and
standardizing heterogeneous and often implicit processes is an important task, especially for large
development organizations. On the one hand, such a standard must be generic enough to cover all
of the organization’s development activities; on the other hand, it must be as detailed and precise
as possible to support employees’ daily work. Today, organizations typically maintain and
advance a plethora of individual processes, each addressing specific problems. This requires
enormous effort, which could be spent more efficiently. This article introduces an approach to
developing a Software Process Line that, similar to a Software Product Line, promises to reduce
the complexity and thus, the effort required for managing the processes of a software organization.
We propose as majors steps Scoping, Modeling, and Architecting the Software Process Line, and
describe in detail the scoping approach we recommend, based on an analysis of the potential
products to be produced in the future, the projects expected for the future, and the respective
process capabilities needed. In addition, the article sketches experience from determining the
scope of space process standards for satellite software development. Finally, it discusses the
approach, draws conclusions, and gives an outlook on future work are presented.

Keywords: software process line, software product line, scoping, process selection, process
analysis

1 Introduction

Many facets of process technology and standards are available in industry and academia, but
in practice, significant problems with processes and process management remain. Rombach
[1] reports a variety of reasons for this: Some approaches are too generic, while some are too
specific and address only a small part of daily life. Many approaches are hard to tailor to an
organization’s needs. In addition, some approaches impose rather strict rules upon an
organization – but since not everything can be foreseen, there must be room for flexibility.
Yet it remains unclear what must be regulated, and what should be left open. In general,
support for process problems is plentiful, but very scattered, without a systematic concept that
addresses problems in a comprehensive way. This unsatisfactory support leads to a number of
problems, including:
(1) Within one organization, processes are often redundant, i.e., different processes address
similar problems. For example, an organization may utilize five different processes for
requirements engineering – all addressing the same problem of capturing the system
requirements, and all coming with their own templates, examples, tools, etc.
(2) In addition to process redundancy, there are often areas of activity where process support
is incomplete. For example, a mandatory product certification may require certain information

2

to be provided, but there is no activity defined that collects and maintains the respective
information.
(3) Both problems stated above lead to unnecessary effort being spent on unproductive tasks:
problem (1) leads to parallel maintenance of all templates, examples, tools, etc., and problem
(2) is likely to lead to increased effort for collecting and maintaining the requested
information due to the missing guidance.
(4) Additionally, if problems (1) and/or (2) are recognized (usually as root causes for problem
(3)), efforts to align an organization’s processes are usually retrospective, i.e., mostly consider
only past experience and do not actively analyze the (anticipated) future.

A traditional countermeasure taken to overcome problems (1) and partially (2) (and
thus, problem (3)) is to define fixed process reference standards like the German V-Modell®
XT [2], which aim at fulfilling the requirements of maturity models such as CMMI [3] or
ISO/IEC 15504 [4] while reducing the variance in an organization’s processes at the same
time. While standardization like this potentially reduces the number of processes and process
variants, it often also results in very generic processes that are no great help in dealing with
daily problems, and that do not provide the necessary variability for coping with changing
contexts. Furthermore, generic standards must always be integrated with an organization’s
specific characteristics (for example, the product certification mentioned) in order to fully
address problem (2) – a fact that is often neglected and therefore leads to suboptimal
processes.

Nevertheless, problem (4) remains. It can be addressed by providing fully tailored
processes for every project, but this quickly leads to problem (1) again – an enormous number
of (partially) redundant processes. Per-project process tailoring also consumes quite some
effort, which is generally not desirable.

The problems lead to two main research questions:
(a) How can the number of variations within an organization’s processes that are necessary to
support all of its activities be identified, modeled, and managed so that the effort required for
maintaining all is minimized?
(b) Can the anticipated future of an organization be considered in such activities, so that when
a need arises, the respective process is available, and not just identified as missing? How can
this be achieved?

With respect to question (a), one way to decrease maintenance effort in general is to
decrease the number of objects that need maintenance. For example, in today’s cars, a lot
more parts than ten or 20 years ago are designed to last throughout the car’s entire life cycle
without any maintenance at all – thus reducing maintenance effort, but also incurring higher
costs at production time.

For software, the concept of reducing the number of objects that need maintenance
was introduced through Software Product Lines [5], [6]. While tailoring often results in an
increase in the number of objects to handle, Software Product Lines aim at reversing this
effect, i.e., at reducing this number. However, it has also been shown that converting a
collection of software products into a software product line requires additional effort up-front,
which generally pays off after about three products have been constructed from the product
line core [7], [8]. Thus, to limit up-front effort, one key aspect is to sensibly select the
products that will be integrated into the software product line, and to explicitly state which
products will not be part of it – thus defining the scope of the product line.

Following Osterweil’s statement that “Software processes are software, too” [9], we
have transferred the product line concept to software processes, and extended it in order to
provide a possible answer to research questions (a) and (b) stated above. In this article, we

3

provide an overview of what a Software Process Line concept might look like and a detailed
approach for the first step: scoping for software process lines. Our experience shows that the
software process line concept in general and the Scoping approach we developed in particular
address problems (1) to (4) well and help to answer research questions (a) and (b). Our
approach identifies redundant and missing processes, based on past, present, and anticipated
future projects and products of an organization, and assists software process engineers in
selecting the right processes for an organization.

The article is structured as follows: Section 2 presents related work. Section 3.1 briefly
introduces software product lines in order to provide the grounds for our approach, Section
3.2 gives an overview of our concept of software process lines, and Section 3.3 details the
first step of this approach, namely scoping software process lines. Section 4 presents a case
study performed at the Japan Aerospace Exploration Agency (JAXA), where we evaluated an
initial version of our scoping approach. Section 5 discusses the approach, and Section 6 draws
some conclusions and gives an outlook on future work.

2 Related Work

In this section, we connect some related work to the issue of software process scoping. As a
basis for all scoping activities, descriptive process modeling [10] is necessary for identifying
essential process entities. Becker describes an 8-step approach to descriptive process
modeling. During the first step, the objectives and the scope of the modeling effort are
determined. This narrows the extent of the model, but the approach considers only solitary
process instances on the project level, not a set of processes with variabilities. Nevertheless,
descriptive process modeling can be used to determine isolated, real processes that can be
used as input for a variant analysis.

In [11], we presented some initial work leading to the approach described in this
article. In that paper, we laid out the general problem of process management and process
variability, and formulated some requirements that a solution should satisfy.

Bella et al. [12] describe their approach to defining software processes for a new
domain. Based on a reference process model, they used descriptive process modeling to
document the as-is processes and utilized this model as a basis for deriving suitable processes
for engineering wireless Internet services. Through a number of iterations, they collected
qualitative and quantitative experience and adapted the processes where necessary. Their
focus thus was on the past; they evaluated only past events and processes. Software process
scoping also considers the future in terms of expected products and projects.

The idea of systematically combining software product lines with matching processes
was described by Rombach [1]. We consider software process scoping as one potential
building block of such a combined approach.

Characterization and customization approaches exist for a number of software
engineering concepts, for example for inspections [13], [14], [15]. However, they are
constrained to characterizing a limited number of methods from a class of methods (in the
above case, the class of inspection methods). This comprises only a fraction of a software
process scoping approach, namely, that when scoping determines the need for certain
characteristic features in an inspection approach, the above characterization can be used to
determine which inspection approach should be used.

Denger [16] broadens the scope to quality assurance activities in general and provides
a framework for customizing generic approaches to the specific needs of a company. The goal

4

of the framework, however, is to optimize only a single factor (software quality), whereas
software process scoping as proposed in this article aims at optimizing multiple factors, which
can be chosen freely through the product and project characterization vectors.

Avison and Wood-Harper [17] describe an approach to supplying an organization with
a number of methods from which a suitable one can be selected for different purposes. The
authors admit that the necessary method competence for a multitude of methods is hard to
achieve in reality, and therefore suggest that alternatives should be included within a single
method already. Based on our experience, we support this assumption and consider this for
software process scoping by representing variability on different levels of abstraction.

Fitzgerald et al. [18] describe an approach taken at Motorola, which involves tailoring
up-front to encompass expected deviations from the organization standard, and dynamic
tailoring during project runtime to encompass unanticipated circumstances.

The idea of a software product line was first described by Parnas [19] under the term
of program families. Within software product lines, scoping has been considered in a number
of publications. Clements and Northrop [6] describe three essential activities for software
product line development, with scoping being a part of one of them. The authors give a
detailed description of what scoping is for and what it should accomplish, but do not provide
practical guidance on how to actually do it in a project. This has been done by Schmid[20].
He developed a product- and benefit-based product line scoping approach called PuLSE-Eco
2.0, which defines the scope of a software product line depending on the economical benefit
of the products to be produced. The latest version of the approach is described in [21],
integrating 21 customization factors that can be used to adapt the generic approach to a
company’s specific needs. These works were used as a basis for the software process scoping
approach and terminology; however, product line scoping focuses on products only and does
not consider process or other context factors. Bayer et al. developed a product line based on
scoping a number of business processes [22]. Their product line reflects business processes,
and by determining the scope of the business processes to be implemented in software, they
determined the scope of the product line. However, no further information on how scoping
was done is disclosed.

Under the name of Quality Function Deployment [23], Cohen published a method for
clearly specifying and ranking customer needs and then evaluating each proposed product or
service capability systematically in terms of its impact on meeting those needs. This
corresponds to the software process scoping concepts of product/project analysis and process
analysis, respectively, but is also strictly limited to products and services.

There is currently only little research going on that tries to provide a similarly
systematic approach for software processes, although the idea of reusing not only software
products, but also software processes has been around for some time, e.g., in the form of the
experience factory described by Basili and Rombach [24]. So far, adapting processes (also
known as “process tailoring”) is done either generally for an organization, resulting in a single
process standard, or individually for every project, resulting in a large number of process
variants. Most available tailoring instructions are very generic, e.g., in international standards
such as ISO/IEC 12207:1995 [25] or the German V-Modell® XT [2]. However, due to their
general applicability, they rarely provide more than phrases like “pick the activities and work
products necessary for the purpose”, and thus provide only little help in actually tailoring a
process.

Considering the three steps described for Software Process Line Engineering,
Simidchieva et al. have presented, under the name of Process Families, an approach to
identifying and modeling commonalities and variabilities within processes. They also created

5

a reference process architecture based on the identified entities, thus representing the second
and the third step described in Section 3.2 [26].

3 Software Process Line Engineering

3.1 Software Product Lines

The Software Product Line concept takes advantage of the fact that the software a specific
organization produces typically has some common aspect to it – although usually only
implicitly. This aspect may be that it uses similar calculation procedures, is designed for a
specific platform, or shares a number of features among different products. Using a
conventional development approach, every product is developed by one team, with little or no
systematic reuse occurring (mostly on the code/library level). “A Software Product Line is a
set of software-intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way” [6]. This way, the (common) core of all
systems only needs to be maintained once, reducing development and maintenance effort.

 Of course, transforming existing products into a product line, or developing new
products following the product line approach, requires additional effort compared to
conventional development. Therefore, a product line typically selects those products for
which it is economically sensible to invest the effort to integrate them into the product line
(Product Line Scoping) [27]. Once this selection has been completed, the to-be members of
the product line are analyzed for common and variable parts (Product Line Modeling) and
transformed into a product line architecture (Product Line Architecting).

One of the most comprehensive Software Product Line approaches is the PuLSE
approach [5], which we will use to explain the Software Product Line concept. After an initial
baselining and customization step (PuLSE-BC), where an instance of the PuLSE method is
created that is tailored to the specific enterprise context, the construction of a PuLSE Software
Product Line consists of the three main steps
depicted in Figure 1. The first step (PuLSE-
Eco (Economic Scoping), [20]) represents
product line scoping and defines the scope of
the product line by identifying the range of
characteristics that systems within the
product line are to cover. The result is
basically a list of features that should be
packaged as reusable assets within the
product line, and is based on the economic
benefit of each feature for the organization.
The key question for Eco is: Does it pay off
to implement this feature in the product line,
or should it better be implemented
conventionally, outside the product line?

The second step, representing
Product Line Modeling, analyzes the
features/characteristics within the product
line for commonalities and variabilities. This Figure 1: Software Product Line Construction

Scope definition:
identifies the range of

characteristics that
systems in the product

line should cover

Generic work products,
modeling commonalities

and variabilities

Product Line
Scoping

Product Line
Modeling

Product Line
Architecting

Reference architecture,
based on the product line

model

Scope definition:
identifies the range of

characteristics that
systems in the product

line should cover

Generic work products,
modeling commonalities

and variabilities

Product Line
Scoping

Product Line
Modeling

Product Line
Architecting

Reference architecture,
based on the product line

model

6

is realized in PuLSE-CDA (Customizable Domain Analysis). During this step, “the product
line concepts and their interrelationships are elicited, structured, and documented” [5]. CDA’s
outputs are generic workproducts and a decision model in the form of a decision table
corresponding to the variabilities in the generic work products. These decisions are resolved
during product line instantiation to create a specific product from the product line.

The third step, representing Product Line Architecting, is the creation of a reference
software architecture that corresponds to the results of the first two steps. This is covered by
PuLSE-DSSA (Domain Specific Software Architecture). The reference architecture maps the
generic work products from CDA to architecture elements, so that software instances can be
created during product line usage.

Once construction is complete, the Software Product Line can then be used to derive
specific products from the product line (Product Line Instantiation, PuLSE-I). Simplified,
one must resolve all decisions from the decision table created during the second step, which
leads to a product that should cover most of the required features. The still missing features
are added using “glue code”, to account for functionality not foreseen in the product line.
During instantiation, neither the reference architecture nor the generic work products are
altered. If some “glue feature” turns out to be suitable for integration into the product line, the
construction steps are repeated, modifying the scope and all subsequent product line elements
to encompass the additional feature.

3.2 Software Process Lines

The concepts of software product line engineering can be transferred to software processes. In
fact, the three major steps of Product Line construction map fairly well to software processes,
which we will describe briefly. Figure 2 displays our approach, with scoping (light gray)
being the focus of this article and Modeling and Architecting (dark gray) introduced briefly.

The first step realizes the Process Line Scoping activity. During this step, the
organization’s current and future products and projects are analyzed in order to elicit the
process needs of the organization. These needs form the scope of the Process Line.

Additionally, the current processes of the
organization are analyzed with respect to
fulfilling the needs, in order to determine their
capabilities. The analysis results provide
information on where investments in further
Process Line activities are most likely to pay
off, namely those processes that are actually
needed currently and in the future. This
constitutes a difference to product line
scoping, which identifies features along the
lines of one or several product domains,
independent of whether these features are
currently realized in the company’s products
or not. For process line scoping, this analysis
actively reveals gaps in the organization’s
current process landscape, where needs are
not covered by existing processes. We will
detail this in Section 3.3.

Figure 2: Software Process Line Construction

Process Line
Scoping

Scope definition:
identifies the range of

characteristics that
systems in the product

line should cover

Generic work products,
modeling commonalities

and variabilities

Process Line
Modeling

Process Line
Architecting

processes

process assets,

Reference process
architecture, based on
the product line modelprocess

process

process

Process Line
Scoping

Scope definition:
identifies the range of

characteristics that
systems in the product

line should cover

Generic work products,
modeling commonalities

and variabilities

Process Line
Modeling

Process Line
Architecting

processes

process assets,

Reference process
architecture, based on
the product line modelprocess

process

process

7

 The second step (Process Line Modeling) then takes the processes deemed worthy of
further attention and analyzes them in terms of commonalities and variabilities. Based on the
analysis results, a collection of generic process assets (the “building blocks” from which the
processes are built, for example, single activities or document fragments) capturing the
identified commonalities and variabilities is created. A decision model accounts for all
variation points, so that a specific process model can be constructed from the generic process
assets.

The third step (Process Line Architecting), finally, creates a process reference
architecture (i.e., a process model containing all generic process assets and a decision model
governing which assets to put together under which circumstances, forming a specific process
instance) following the results of the first two steps. The resulting process model contains the
common core and all variabilities and is instantiated into individual process models, using the
decision model from the second step, during process line usage.

Once construction is complete, the Software Process Line can be used to derive
process models for specific projects with unique characteristics (Process Line Instantiation),
for example, for creating safety-critical software, or to support rapid development. This is
supported by the characteristics determined in the scoping step. As with Software Product
Lines, during Process Line usage, neither the scope nor the process reference architecture is
altered. A customization step may introduce process capabilities not provided by the Process
Line (for example, the production of an additional artifact for auditing purposes); should these
capabilities be integrated into the Process Line, however, the construction steps (scoping,
modeling, and architecting) need to be (partially) repeated, resulting in a modified Software
Process Line Scope and subsequent elements.

Corresponding to [6], we define a Software Process Line as a set of software processes
with a managed set of characteristics that satisfy the specific needs of a particular
organization and that are developed from a common set of core processes in a prescribed
way. Corresponding to [20], software process line scoping is defined as the identification of
the range of characteristics that processes in the process line should cover. The following
Section describes our software process scoping approach in detail.

3.3 Process Line Scoping

Our scoping approach consists of five main steps:
(1) Product Analysis, in order to identify product-imposed process needs,
(2) Project Analysis, in order to identify project-imposed process needs,
(3) Process Analysis, using the same attributes as for products and projects in order to
identify process capabilities,
(4) Attribute Prioritization, and
(5) Scope Determination using a mathematical model.
The result of these five steps is an objective analysis of the organization’s process needs
(steps (1) and (2)), the capabilities of the current processes and potential (external, not yet
utilized) processes (step (3)), and a recommendation for the scope of the organization’s
processes (steps (4) and (5)). Depending on the kind of organization, product and project
characterization may have a different weight for assessing process needs: An organization
developing five products, following a fixed-release cycle, might put more emphasis on
product characterization, whereas a project organization that develops customer-individual
software in projects might concentrate more on project characterization.

8

3.3.1 Product Analysis

During this step, existing and future software products are identified for which development
and maintenance processes must be supplied. Each identified product is then analyzed using
specific attributes. For existing software products, potential sources of information are all
work products, e.g., product requirements, design documentation, roadmaps, test
documentation, etc. For planned software products (i.e., products for which development has
been decided and is firmly planned), artifacts such as market analyses, business strategies,
product portfolio plans, product roadmaps, release plans, or even standard roadmaps may be
utilized. For potential products (i.e., products that have been thought of, but whose realization
is not sure yet), information sources such as organization strategy or organization roadmaps
can be used to predict the near-to-midterm product future.

Product identification is simplified if a software product line approach has been
implemented in the organization, in which case it is sufficient to extract the required
information from the software product line artifacts (e.g., product map and asset scope when
using PuLSE). However, if such an approach has not been taken, the required information
must be elicited by other means.

For each identified product, its probability of being implemented or maintained (and
thus, of requiring a process to support its development or maintenance) is determined. This
can be done individually for each product, or in groups for existing, planned, and potential
products, for example, rating existing products at 100% (meaning that every existing product
is going to be maintained as well), planned products at 75%, and potential products at 50%.

Next, product characterization attributes are identified. These attributes represent
product characteristics that are known or assumed to have an influence on the development
process. Naturally, the list of product characterization attributes depends largely on the kind
of product, therefore there is no generic list that can be applied to all products. Still, some
suggestions can be found in Table 1. What is required is a description of product
characteristics with respect to processes – any characteristic that requires special process
attention should be taken into account. For example, a product that is safety critical and needs
to be certified according to ISO/IEC 61508 [28] requires certain mandatory processes to be
followed. Thus, “safety criticality” would be considered a process-related product
characterization attribute.

Table 1: Product and Project Characterization Attributes

Product Project
Size Degree of Distribution

Complexity Schedule Pressure
Criticality Available Personnel

Requirements Stability Cooperation with Customer
Safety Criticality Temporal Distribution

Developer Experience Developer Experience
Once the attribute list is complete, products can be rated using this list. We use a 3-

item scale with the value “3” standing for a high rating (for example, a “3” in “size” means
that the product is big) and “1” for a low one (small product), leaving “2” for a medium rating.
We will use this scale throughout this article.

To reflect the lower probability of planned and potential products becoming relevant
for the organization and thus for its processes, the product rating must then be discounted.
Discounting is done using the following formula:

9

(1)),()(),(jiPRiPjiPR od ⋅= with
 =),(jiPRd discounted product rating for product i, attribute j

=)(iP probability of product i
=),(jiPRo original rating of product i, attribute j.

Example. A supplier for a car manufacturer currently builds three products: a steering angle
sensor (SAS), power windows, and a rain sensor. It has plans to build two new products: a
light sensor (LS) and a power trunk. A long-term strategy is to move up the value chain and
produce larger, more complex (and more expensive) components: a lane assistant and a
distance sensor (DS). Current products are rated at 100% probability (meaning that these
products with their unique features are going to be maintained), planned products at 75%, and
potential products at 50%. The product characterization attributes that were identified are:
– Safety criticality (SC), e.g., in terms of SILs [28],
– Requirements fuzziness (RF), e.g., in terms of number of use cases defined,
– Complexity, e.g., in terms of cyclomatic complexity, and
– Size, e.g., in terms of function points.

Table 2 shows the results of the product analysis activity. The first column contains
the products, the second column their probabilities. Columns 3, 5, 7, 9 contain the original
ratings of the respective attributes, columns 4, 6, 8, 10 (gray background) the discounted
ratings, based on the probability displayed in column 2. The values in the gray columns will
be used for further steps.

Table 2: Product Analysis Results

Probability Safety
criticality

SC
discounted

Requ.
fuzziness

RF
discounted Complexity Complexity

discounted Size Size
discounted

Product 1 Steering angle sensor (SAS) 100% 1 1 1 1 2 2 2 2
Product 2 Power windows 100% 2 2 1 1 1 1 1 1
Product 3 Rain sensor 100% 3 3 1 1 1 1 2 2
Planned 4 Light sensor (LS) 75% 1 0.75 2 1.5 1 0.75 2 1.5
Planned 5 Power trunk 75% 2 1.5 3 2.25 2 1.5 2 1.5
Potential 6 Lane assistant 50% 3 1.5 3 1.5 3 1.5 3 1.5
Potential 7 Distance sensor (DS) 50% 3 1.5 2 1 3 1.5 3 1.5

3.3.2 Project Analysis

Project analysis is done exactly like product analysis is, just using projects as the basis. This
means that first, existing, planned, and future projects need to be identified for which
development and maintenance processes must be supplied. Existing projects can be extracted
from project plans, project traces, project documentation packages, (tailored) process
documentation, and the like. Planned projects can also be extracted from project plans, a
project portfolio, tailored process documentation, or other context information. Potential
projects, however, rely heavily on context information such as expert estimates as to “what
might come”, aside from the organization strategy/roadmap information already mentioned in
Section 3.3.1.

For each identified project, its probability is determined, for example 100% for
existing projects that need continued support, 75% for planned projects, and 50% for potential
projects. Next, project characterization attributes are identified. As with product
characterization attributes, there is no generic list, some suggestions, however, can be found
in Table 1. Once the attribute list is complete; the projects can be rated using the list and the
discounted rating, using the following formula (in analogy to formula (1)):

10

(2)),()(),(jiPJiPjiPJ od ⋅= with
 =),(jiPJ d discounted project rating for project i, attribute j

=)(iP probability of project i
=),(jiPJo original rating of project i, attribute j.

Example. The automotive supplier from Section 3.3.1 sells its products to multiple customers.
Therefore, they currently have three projects running, namely, preparing the steering angle
sensor (SAS) for Daimler, BMW, and Volkswagen (VW). They have already planned two
more projects, providing a light sensor (LS) for Daimler and Toyota, and are trying to acquire
two more projects: adapting the light sensor for BMW, and developing a distance sensor (DS)
for VW. The rating attributes identified were:
– Degree of Distribution (DoD),
– Cooperation with Customer (CwC),
– Developer Experience (DE), and
– (anticipated) Schedule Pressure (SP).

Table 3 shows the results of the project analysis activity. Column 1 contains the
identified projects, column 2 their probabilities. Columns 3, 5, 7, 9 contain the original ratings
for the attributes, columns 4, 6, 8, 10 (gray background) the discounted values. The values in
the gray columns will be used for further steps.

Table 3: Project Analysis Results

Probability Degree of
Distribution

DoD
discounted

Cooperation
w/ Customer

CwC
discounted

Developer
Experience

DE
discounted

Schedule
Pressure

SP
discounted

Project 1 SAS-Daimler 100% 1 1 3 3 1 1 3 3
Project 2 SAS-BMW 100% 1 1 1 1 2 2 2 2
Project 3 SAS-VW 100% 3 3 1 1 3 3 1 1
Planned 4 LS-Daimler 75% 1 0.75 3 2.25 1 0.75 2 1.5
Planned 5 LS-Toyota 75% 3 2.25 1 0.75 2 1.5 2 1.5
Potential 6 LS-BMW 50% 2 1 1 0.5 1 0.5 2 1
Potential 7 DS-VW 50% 2 1 1 0.5 1 0.5 2 1

3.3.3 Process Analysis

Process analysis determines the capabilities of processes. First, currently used and potentially
usable processes are identified. Then these processes are analyzed, using the attributes defined
during product and project analysis.

Process identification for currently used processes is supported by available process
documentation and the implicit process knowledge of employees. Identification of potentially
usable processes can be supported by empirical knowledge published in the literature, by
consulting institutions, or by process standards. Rating the processes can be supported by
assessment results and project evaluations.

Once the list of processes to be analyzed is complete, the list of characterization
attributes must be compiled. This means merging the characterization attributes from product
and project analysis into one list. Using this list, all processes that were identified in the first
activity of this step are rated. The result is a preliminary process characterization, which will
be refined in one more step in order to provide a suggested scope for the organization.

Example. The exemplary automotive supplier has determined the following processes to be
characterized:

11

– Requirements Processes: Formal Specification [29], Brainstorming [30], Use Cases [31],
Storyboards [32], and the Delphi method [33].

– Design Processes: Cleanroom [34], Object-Oriented Design (OO) [35], Leonardo [36],
Structured Design (SD) [37].

Table 4 shows the results of the process analysis. The first column contains the processes that
were analyzed, columns 2-9 the values for the characterization attributes.

Table 4: Process Analysis Results

Safety Distribution Fuzzy Reqs. Cooperat. Complexity Dev. Exp. Size Schedule P.
Req. Formal Sp. 3 3 1 1 1 2 1 3

Brainstorm 1 1 1 3 1 3 2 1
Use Cases 2 2 2 2 2 2 2 2
Storyboards 1 1 1 1 2 3 2 1
Delphi 3 3 3 3 3 2 2 3

Design Cleanroom 3 2 2 1 3 2 2 1
OO 2 2 3 2 3 2 2 2
Leonardo 1 1 1 2 3 1 3 2
SD 1 1 1 2 1 2 3 1

3.3.4 Attribute Prioritization

So far, the analysis activities considered all attributes equally important. In reality, this will
most likely not be the case. Thus, we propose an additional step in order to prioritize the
attributes and to be able to better distinguish processes for different needs.

There are a number of ways to prioritize arbitrary entities. The most straightforward
one is to just assign numbers to each attribute; the higher the number, the higher the
respective attribute’s value. However, this may lead to imprecise priorities, especially with a
larger number of attributes, because when using this technique, any attribute is only compared
to very few other attributes based on which its priority is assigned.

Therefore, we propose a somewhat more elaborate, but therefore more objective
method for prioritizing the characterization attributes: pair-wise comparison [38]. Using this
method, every characterization attribute is compared to all other characterization attributes
and a value is assigned, depending on whether it is considered more important than its
counterpart, less important, or equally important. By summing up all comparison values for
each attribute, their importance relative to each other is determined. This importance can then
be scaled to meet arbitrary needs, e.g., to fit between predefined boundaries for highest and
lowest relative value.

Example. Attribute prioritization for the example company leads to the results displayed in
Table 5. The first column denotes the attributes. Comparison results are noted above the black
diagonal, the values below the diagonal (gray background) are calculated by negating their
counterparts above the diagonal. If the attribute denoted in the line is more important than the
one denoted in the column, the cell where both cross each other is marked with a “+”. If it is
the other way around, the cell is marked with a “-“. An “o” denotes equal importance.
Column 10 contains the calculated priority, assigning a “+” 2 points, an “o” one point, and a
“-“ zero points. Column 11 contains the relative importance of the attributes, projected on a
scale of 50% … 100%. This means that the attribute that is considered least important is
assumed to be half as important as the most important one.

12

Table 5: Attribute Prioritization Results

Attribute Safety
Criticality

Requ.
Fuzziness Complexity Size Degree of

Distribution
Cooperation
w/ Customer

Developer
Experience

Schedule
Pressure Priority Relative

Importance
Safety criticality + + + + + + + 14 100%
Requ. fuzziness - - - - + - - 2 54%
Complexity - + + + + + + 12 92%
Size - + - + + + + 10 85%
Degree of distribution - + - - + + + 8 77%
Cooperation w/ customer - - - - - - o 1 50%
Developer experience - + - - - + o 5 65%
Schedule pressure - + - - - o o 4 62%

3.3.5 Scope Determination

With the attributes prioritized, the scope of the Software Process Line can finally be
determined. First, the process analysis described in Section 3.3.3 is modified, based on the
attribute prioritization. Then, the values in each line are summed up. The sums describe the
degree to which each process covers the needs of the existing, planned, and potential products
and projects, considering the uncertainty in events that have not happened yet and
characterization attribute priorities.

Updating the process analysis from Section 3.3.3 is done by calculating the weighted
process capabilities based on attribute importance using the following formula:

(3))(),(),(jjiujiw APAPCAPC ⋅= with
),(jiw APC = weighted capability of process i for attribute j,

),(jiu APC = unweighted capability of process i for attribute j, and
)(jAP = priority of attribute j.

(Weighted capability of a process i for attribute j equals unweighted capability of process i for
attribute j * priority of attribute j.)

Example. Applying the above formula to the process analysis results (Section 3.3.3) and the
attribute prioritizations (Section 3.3.4) of our example company leads to the results displayed
in Table 6. The first line of the table contains the attributes used for characterization with their
respective priorities on a scale of 50% … 100%. The first column contains the processes that
were analyzed. Columns 2-9 contain the weighted characterization values that are the output
of formula (3). Column 10 sums up the lines, with the gray lines as the suggested scope of the
Software Process Line: Use Cases and Delphi for Requirements Engineering, and Cleanroom
and Object-Oriented Design for Software Design Engineering. The cutoff criterion in this case
was to select the 2 top rated processes from each category; however, looking at the 11.3 rating
of Formal Specification, which puts it close to Use Cases (11.7) and clearly away from
Brainstorming (9.0) and Storyboards (8.9), a different cutoff criterion may make sense.

Table 6: Weighted Process Analysis Results

Safety Distribution Fuzzy Reqs. Cooperat. Complexity Dev. Exp. Size Schedule P.
100% 77% 54% 50% 92% 65% 85% 62%

Req. Formal Sp. 3.0 2.3 0.5 0.5 0.9 1.3 0.8 1.8 11.3
Brainstorm 1.0 0.8 0.5 1.5 0.9 2.0 1.7 0.6 9.0
Use Cases 2.0 1.5 1.1 1.0 1.8 1.3 1.7 1.2 11.7
Storyboards 1.0 0.8 0.5 0.5 1.8 2.0 1.7 0.6 8.9
Delphi 3.0 2.3 1.6 1.5 2.8 1.3 1.7 1.8 16.0

Design Cleanroom 3.0 1.5 1.1 0.5 2.8 1.3 1.7 0.6 12.5
OO 2.0 1.5 1.6 1.0 2.8 1.3 1.7 1.2 13.2
Leonardo 1.0 0.8 0.5 1.0 2.8 0.7 2.5 1.2 10.5
SD 1.0 0.8 0.5 1.0 0.9 1.3 2.5 0.6 8.7

SUM

13

4 Case Study

We applied an abridged version of the scoping approach described above at the Japan
Aerospace Exploration Agency (JAXA). Unfortunately, practical constraints (mostly project
schedule issues and personnel availability) forced us to cut some corners:
– Product, project, and process analyses were carried out, but without discounting planned

and potential products and projects (thus considering all as equal).
– Since only few relevant characterization attributes were identified, prioritization was

straightforward, so the pair-wise comparison as described in Section 3.3.4 was not needed.
The scope determined was used as input for the commonality and variability analysis, i.e., the
Process Line Modeling step described in Section 3.2. However, this activity did not
immediately lead to elements being removed from the processes used due to a variety of
reasons. Instead, those processes and process parts that were not required constantly (thus
having a low scope rating) were considered optional, with precise criteria defined as to when
to apply them. These criteria were derived from the analysis results.

The experiences we collected during the JAXA application of the approach were
integrated in the version described in Section 3.3. In this section, we will briefly describe our
test run and our experiences from an ongoing effort within JAXA to provide a process line for
their space software development. Our focus in doing so lies on scoping for satellite software
development (see Figure 3). We describe the project context and results, but due to
confidentiality reasons, we cannot disclose all the details, such as the complete
characterization profiles, cost information, or the detailed scoping results; however, we will
share our experiences.

4.1 Process Scoping in the Aerospace Domain

The ultimate goal of the ongoing project we are reporting on is to provide a software
process line for JAXA’s space software development. This includes satellite software, launch
vehicle software, and ground segment software (see Figure 3). So far, we have completed the
first (scoping) and the second (modeling) steps of the software process line engineering
approach described in Section 3.2. Scoping provided analyses of two products (satellites)
developed in two projects. In the space domain, there is a very strong correlation between

Figure 3: JAXA Process Line Overview

JAXA Space Domain
Engineering Process Line

Satellite
Process Line

Satellite 1
Process

Launch
Vehicle
Process

Launch Vehicle
Process Line

Ground
Segment
Process 1

Ground Segment
Process Line

Ground
Segment
Process 2

ISO 12207

SPICE FOR SPACE

JAXA PAM

refers
to

Satellite 2
Process

Article Focus

JAXA Space Domain
Engineering Process Line

Satellite
Process Line

Satellite 1
Process

Launch
Vehicle
Process

Launch Vehicle
Process Line

Ground
Segment
Process 1

Ground Segment
Process Line

Ground
Segment
Process 2

ISO 12207

SPICE FOR SPACE

JAXA PAM

refers
to

Satellite 2
Process

Article Focus

14

product and project, since each product is unique. Nevertheless, a meaningful project and
product analysis is not trivial. In our case, it became apparent very soon that while attributes
for project analysis often had only two possible values (e.g., “National” and “International”
for the “Collaboration type” attribute), this was not the case for product analysis. For example,
complexity, criticality, and size were determined on a 3-item scale by experts.

Table 7 and Table 8 show an extract of the analysis results of the projects and products,
respectively. So far, only satellite products and projects have been analyzed: however, similar
work for the launch vehicle and ground segments is currently going on (gray background in
the tables). Due to confidentiality reasons, subsystems and suppliers are represented by
numbers.

Table 7: Excerpt from JAXA Project Analysis Results

Collaboration
Type

Mission
Type Subsystem Supplier …

Satellite 1 National Engineering 1, 2, 3 1, 2
Satellite 2 International Science 3 1

Launch Vehicle 1
Launch Vehicle 2

Ground Segment 1
Ground Segment 2

Table 8: Excerpt from JAXA Product Analysis Results

Complexity Criticality Size Stable
Requirements …

Satellite 1 Subsystem 1 3 2 3 yes
Subsystem 2 2 3 3 yes
Subsystem 3 1 1 2 yes

Satellite 2 Subsystem 3 1 1 2 no
Launch Vehicle 1
Launch Vehicle 2

Ground Segment 1
Ground Segment 2

There are a number of interdependencies between project and product analysis data
that are not apparent at first sight, but that surfaced during scoping efforts. For example, the
unstable requirements for Satellite 2, Subsystem 3 require an iterative development approach
– this led to the fact that for each potential supplier, it had to be checked whether such a
process could be supported. In our case, Supplier 1 was chosen and had to adapt (for Satellite
2) its processes to the international collaboration type. Other interdependencies led to
conflicts, e.g., the collaboration type “international” demanded that documentation had to be
made available in English upon request, suggesting one set of potential suppliers, but the
mission type suggested a different set – this was solved by prioritizing characterization
attributes.

15

Figure 4: JAXA Satellite Process Line Architecture Excerpt

Satellite
Process Line

FMECA

Rationale
for Design

Design
Software

Software Design
Specification

Opt1

Opt2

FMECAFMECA

Rationale
for Design
Rationale
for Design

Design
Software

Software Design
Specification

Software Design
Specification

Opt1

Opt2

Satellite 1
Process

Satellite 2
Process

FMECA

Rationale
for Design

Design
Software

Software Design
Specification

FMECAFMECA

Rationale
for Design
Rationale
for Design

Design
Software

Software Design
Specification

Software Design
Specification

Design
Software

Software Design
Specification

Design
Software

Software Design
Specification

Software Design
Specification

4.2 Experience

Translating the project and product
analysis results into requirements for the process
proved not to be an easy task. Most “soft”
product characteristics such as complexity, size,
or criticality could not be used to directly derive
new or changed processes. In fact, these factors
mostly did not lead to qualitative process
changes (i.e., new or changed activities or work
products), but influenced project planning in
such a way that, for instance, the number of
reviews of a particular work product was
increased, or that the amount of independent
Verification and Validation was increased. This
was not modeled in detail in the software process
line due to JAXA-internal standards for process
models; instead, only high-level directives and
quality requirements were given, which have to
be implemented individually by the suppliers.

Project analysis, on the other hand, led to
a number of variation points within the

process itself. A variation point
means that a decision has to be made
in terms of choosing among several
alternatives: While some findings did
not change the process itself (e.g., the
requirement that for international
projects, documentation was to be
produced in English upon request),
others did. For example, for
international cooperation projects
with the European Space Agency
(ESA), a new activity was introduced

for analyzing hardware/software interaction, producing the new work product FMECA
(Failure Mode, Effects, and Criticality Analysis). Especially for exploratory science projects,
the usual process standard was perceived as being too heavy. As a consequence, the number
of quality assurance activities was reduced, and the requirements and design rationales were
waived. Also, source code quality assurance measures were decreased for this type of project.

The variations were modeled using the graphical software process modeling tool
SPEARMINT™ [39]. Process parts that were optional were marked accordingly, with a
detailed description of when to consider the respective part. Figure 4 displays an excerpt of
the result of the Process Line Modeling activity. The resulting model contained a number of
variation points, with the work products FMECA and Rationale for Design being shown as
Opt1 and Opt2. The characterization results from the process line scoping activity govern the
decisions on variation points. Opt1 concerns the creation of the FMECA document, which is
mandatory for international collaboration type projects, and does not need to be created for

16

other collaboration types. Opt2 concerns the Rationale for Design document, which is
mandatory for engineering mission types, and not necessary otherwise.

Similarly, decisions for the other variation points (not shown in Figure 4) can be
derived from the analysis results. Thus, the satellite process line could then be instantiated
into two specific satellite processes. From one of these, the formerly optional parts were
erased (lower left part of Figure 4), whereas in the other one, these parts were now made
mandatory (lower right). The resulting Satellite 1 process supports a national science-type
project, the Satellite 2 process an international engineering type project.

The resulting process model contains 76 modeled activities, 54 artifacts, 18 graphical
views depicting product flow, and another 18 graphical views depicting control flow.
Transferring the satellite process line into daily practice, however, has proved to be no simple
task. The modification of standards in the aerospace domain cannot be done on-the-fly
because many stakeholders are involved and the consequences of software failures (possibly
stemming from a faulty standard) are potentially grave. So far, the software process line we
have developed has been published as an appendix to the official JAXA software standard. It
has therefore not yet replaced the current standard, but JAXA engineers and their suppliers are
encouraged to examine the process line and provide comments and feedback.

Both our and JAXA’s experience with the scoping approach taken were positive. The
feedback collected from JAXA engineers supports the expectation that the approach is
feasible for application in an industry setting, which was our main concern at the beginning.
For the future, we expect a significant decrease in maintenance effort for the satellite
processes: The classic approach would have developed two independent processes for satellite
development. The process line approach enables engineers to consider the variable parts
separately, while for most of the process line, there is only one process to be maintained
instead of two.

5 Discussion

In this article, we have transferred the concepts of software product lines to the process world
– with success, we believe. Our experience during the development of the scoping approach
and its application within JAXA supports this impression. However, this is only one
application, and while it indicates the feasibility of the approach, it does not prove its general
applicability. This will need to be proven through empirical work, just as for product lines.

In our opinion, the greatest advantage of the scoping approach we presented is that it
makes explicit a number of facts and decisions that are implicit at best otherwise. This way,
they can be discussed and evaluated, something that is not possible for implicit knowledge.
Another advantage is that the approach makes an organization very flexible within its scope.
Setting up a new (or modified) process, based on the process repository, can be completed
very quickly, as opposed to fully tailoring a standard. For products or projects outside the
domain, this is obviously not the case. However, from our experience, this kind of flexibility
on a global scale (“we’re great at everything”) is an illusion anyway. Therefore, our approach
assists organizations in determining their scope and then achieving process excellence for this
scope.

Product analysis forces an organization’s process engineers to think about the product
future of the organization. This makes the approach vulnerable, of course. If there is no
somewhat defined product strategy within an organization, it will be hard to derive process
demands from this. On the other hand, without the product analysis of our scoping approach,

17

this information would also not be available, even worse: It may not even be noticed that the
product strategy is incomplete. Thus, we do not consider this a problem of the approach, but
rather a necessary precondition for it to work with full effectiveness. The same applies to
project analysis.

Attribute selection is vital for the selection recommendation made by the approach. If
the wrong attributes are selected, the approach may determine a completely wrong scope for
an organization, resulting in a faulty process repository. This is clearly a threat that lies within
the approach itself. We have tried to mitigate it by providing some generally applicable
attributes, but due to the highly different domains that exist in the software world, domain-
specific attributes will almost always be needed and thus will need to be specified. In the
future, we will direct some effort towards attribute selection strategies in order to strengthen
this part of the approach.

The results of the process analysis, when not based on empirical evidence, depend on
the people executing the analysis. If their evaluation of a certain process and attribute is
wrong, so will be the process analysis results. However, we do not consider this to be a flaw
of the approach, since the same people would probably also make this (wrong) decision
without the approach. On the contrary, by making the analysis explicit and transparent, we
believe that the approach actually helps to identify potentially problematic evaluations and
correct them before any decisions are made

Attribute prioritization may influence the scope in different ways. If attributes are not
prioritized, they are all considered equal. This may lead to a suboptimal scope definition,
which puts too much emphasis on issues that are too unimportant. Even worse, a wrong
prioritization may turn the scope around, providing just the wrong processes for an
organization. While this is an inherent threat to the approach, we also believe in this case that
the transparency created by the explicit prioritization will help to avoid such situations.

Scope determination, finally, obviously has a great impact on the final scope.
Depending on the selection approach, the scope may be defined very differently for different
approaches. Since we do not yet have empirical evidence on different selection approaches,
we can only speculate on better and worse ones. However, the problem at hand looks very
much like a multi-objective optimization problem, for which a number of possible approaches
are available. We will investigate this further in the future.

In general, the process scoping approach seems to benefit more process-mature
organizations most. Obviously, processes must be defined and followed – a precondition that
is unfortunately not met by many organizations. Further, there must be experience available
for past products and projects as well as their respective processes. A clear plan for the short-
to mid-term future is finally required to fully exploit the approach. This indicates that a
certain process maturity is required to apply the approach – this corresponds to the product
line approach, which also requires a certain organization maturity in order to be applied
successfully. As for specific domains or processes, at this point we do not see any domain or
process that is particularly well-suited (or ill-suited) for our approach. Considering problems
(1) to (4) and research questions (a) and (b) stated in Section 1, the experience we have
collected suggests that our approach can provide significant help in solving the problems and
answering the research questions.

18

6 Conclusions and Outlook

In this article, we presented an approach to building a Software Process Line, in analogy to
Software Product Lines, and detailed the first step of such an approach, which is Software
process line scoping. The approach, when developed and implemented successfully, promises
significant effort savings for process management, since an organization’s processes do not
need to be maintained in parallel, isolated from each other, but rather their common elements
can be maintained only once, with specific extensions for each variation within otherwise
similar processes. We do not yet have empirical proof of the potential savings, but expect
these based on the savings proven for software product lines [8], [7]. We will investigate this
further in the future.

As a first step towards a comprehensive Software Process Line Engineering
methodology, we have developed an approach for systematically scoping processes for a
Software Process Line. The scope determines which processes to include in a Software
Process Line, and which ones not to, thus directing the additional effort for setting up a
Software Process Line to areas where this effort is expected to pay off most. This directing is
done by analyzing existing, planned, and potential products and projects for their process
needs using a number of characterization attributes, and then rating the available process
options in terms of fulfillment of these process needs, using a mathematical model. This way,
an organization’s current situation and its anticipated future development are accounted for,
allowing for better process selections than when using entirely retrospective analyses.

Even after this first step towards Software Process Lines, significant savings are
already to be expected, by streamlining and harmonizing an organization’s processes to what
is really needed now and in the short- to mid-term future, and by discarding those processes
that are determined to be less relevant. This gives process groups within organizations a tool
for objectively deciding in which direction the organization’s processes should be developed
and for helping them to become more independent of individual experience.

Our experiences with the approach, especially those collected during its pilot
application at JAXA, encourage us to continue on this path, and to expand the JAXA process
line from satellite software development both horizontally to other branches (launch vehicle,
ground segment) and vertically (JAXA-wide). The experience we have collected so far
supports the requirements we set up in [11]. However, since process scoping research is yet in
its infancy, a number of open questions remain. For one, there are a number of ways to define
the scope from the scope determination results as described in Section 3.3.5: Choose the n
processes with the highest rating, choose those processes that are rated significantly higher
than the others, etc. – it is unclear whether there is a “best” way to define the scope, and if so,
which one this might be. A meaningful limitation of characterization attribute values (e.g., for
attributes such as “complexity” or “criticality”) and their objective assessment is another open
issue. Furthermore, thorough investigation is needed on the subjects of how to handle
different levels of abstraction in processes and characterizations (especially when talking
about variability on these levels of abstraction, introduced, for example, by a vertically
growing process line), how to describe interdependencies among variable parts and
characterization attributes, and how to sensibly limit the number of characteristics and
variation points.

Following up on what we have learned so far, our next steps will be the application of
the full approach in industry and the horizontal expansion and the inclusion of more satellite
projects and products into the base of the JAXA process line. From a scientific viewpoint, we
will address the open questions, e.g., the identification of sensible ways to define the scope

19

from the scope determination results, or the collection of empirical evidence for the expected
savings.

Acknowledgments

We would like to thank Ms. Sonnhild Namingha from Fraunhofer IESE for reviewing
the first version of this article. We also thank the anonymous reviewers for their valuable
comments on the first version of this article.

References

[1] Rombach, H. D.: Integrated Software Process and Product Lines. In: Li, M.,
Boehm, B., Osterweil, L. J. (eds.). Proceedings of the International Software
Process Workshop (SPW 2005), Beijing, China, Lecture Notes in Computer
Science 3840/2006, pp. 83-90, (2005).

[2] Das V-Modell XT 1.2.1.1, http://www.vmodellxt.de/, last visited 2009-01-15.
[3] Capability Maturity Model Integration, http://www.sei.cmu.edu/cmmi/, last

visited 2009-01-19.
[4] International Organization for Standardization: ISO/IEC 15504. ISO/IEC, Geneva,

Switzerland (2006).
[5] Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T.,

DeBaud, J.: PuLSE: A Methodology to Develop Software Product Lines.
Proceedings of the 5th ACM SIGSOFT Symposium on Software Reusability
(SSR99), Los Angeles, California, United States, pp. 122-131, (1999).

[6] Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002).

[7] Ganesa, D., Muthig, D., Yoshimura, K.: Predicting return-on-investment for
product line generations. Proceedings of the 10th International Software Product
Line Conference (SPLC'06), 21-24 August 2006, Baltimore, Maryland, USA, pp.
13-24, (2006).

[8] Böckle, G., Clements, P., McGregor, J. D., Muthig, D., Schmid, K.: Calculating
ROI for Software Product Lines. IEEE Software 21 (3), 23-31 (2004).

[9] Osterweil, L. J.: Software Processes are Software Too. Proceedings of the 9th
International Conference on Software Engineering (ICSE 1987), Monterey,
California, USA, 1987, pp. 2-13, (1987).

[10] Becker, U., Hamann, D., Verlage, M.: Descriptive Modeling of Software
Processes, Kaiserslautern, Germany (1997).

[11] Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H., Ocampo, A.:
Scoping Software Process Models - Initial Concepts and Experience from
Defining Space Standards. In: Wang, Q., Pfahl, D., Raffo, D. M. (eds.).
Proceedings of the International Conference in Software Process (ICSP2008),
Leipzig, Germany, 2008, Lecture Notes in Computer Science 5007, pp. 160-172,
(2008).

[12] Bella, F., Münch, J., Ocampo, A.: Observation-based Development of Software
Process Baselines: An Experience Report. Proceedings of the Conference on
Quality Engineering in Software Technology (CONQUEST), September 22-24

20

2004, Nuremberg, Germany (2004).
[13] Biffl, S., Halling, M.: Managing Software Inspection Knowledge for Decision

Support of Inspection Planning. In: Aurum, A., Jeffery, R., Wohlin, C., Handzic,
M. (eds.) Managing Software Engineering Knowledge. Springer Verlag, Berlin
(2003).

[14] Schweikhard, T.: Identification of inspection-variation-factors for a decision-
support-tool. Diplomarbeit, Fachbereich Informatik, Technische Universität
Kaiserslautern (2006).

[15] Vegas, S., Basili, V. R.: A Characterization Schema for Software Testing
Techniques. Empirical Software Engineering 10 (4), 437-466 (2005).

[16] Denger, C., Elberzhager, F.: A Comprehensive Framework for Customizing
Quality Assurance Techniques, Kaiserslautern, Germany (2006).

[17] Avison, D. E., Wood-Harper, A. T.: Information Systems Development Research:
An Exploration of Ideas in Practice. The Computer Journal 34 (2), 98-112 (1991).

[18] Fitzgerald, B., Russo, N. L., O’Kane, T.: Software Development Method
Tailoring at Motorola. Communications of the ACM 46 (4), 65-70 (2003).

[19] Parnas, D. L.: On the Design and Development of Program Families. IEEE
Transactions on Software Engineering SE-2 (1), 1-9 (1976).

[20] Schmid, K.: Planning Software Reuse - A Disciplined Scoping Approach for
Software Product Lines. PhD Thesis. Fachbereich Informatik, Universität
Kaiserslautern (2003).

[21] John, I., Knodel, J., Lehner, T., Muthig, D.: A Practical Guide to Product Line
Scoping. Proceedings of the 10th International Software Product Line Conference
(SPLC 2006), 21-24 August 2006, Baltimore, Maryland, USA (2006).

[22] Bayer, J., Kose, M., Ocampo, A.: Improving the Development of e-Business
Systems by Introducing Process-Based Software Product Lines. In: Münch, J.,
Vierimaa, M. (eds.). Proceedings of the 7th International Conference on Product-
Focused Software Process Improvement (PROFES'2006), Amsterdam, The
Netherlands, Lecture Notes in Computer Science 4034, pp. 348-361, (2006).

[23] Cohen, L.: Quality Function Deployment: How to Make QFD Work for You.
Addison Wesley Longman (1995).

[24] Basili, V. R., Rombach, H. D.: Support for Comprehensive Reuse. IEEE Software
Engineering Journal 6 (5), 303-316 (1991).

[25] International Organization for Standardization: ISO/IEC 12207:1995. ISO/IEC,
Geneva, Switzerland (1995).

[26] Simidchieva, B. I., Clarke, L. A., Osterweil, L. J.: Representing Process Variation
with a Process Family. In: Wang, Q., Pfahl, D., Raffo, D. M. (eds.). Proceedings
of the International Conference on Software Process (ICSP 2007), May 19-20,
2007, Minneapolis, MN, USA, Lecture Notes in Computer Science 4470, pp. 109-
120, (2007).

[27]Schmid, K.: A Comprehensive Product Line Scoping Approach and Its Validation.
Proceedings of the 24th International Conference on Software Engineering (ICSE
2002), May 19-25, 2002, Orlando, Florida, USA, pp. 593-603, (2002).

[28] International Electrotechnical Commission: IEC 61508. IEC, Geneva, Switzerland
(2005).

[29] Formal Methods Europe, http://www.fmeurope.org/, retrieved 2008-08-12.
[30] Osborn, A. F.: Applied Imagination. Charles Scribner's Sons, New York, USA

(1957).

21

[31] Bittner, K., Spence, I.: Use Case Modeling. Addison-Wesley Longman,
Amsterdam (2002).

[32] Form feeds function: The role of storyboards in requirements elicitation,
http://www.ibm.com/developerworks/rational/library/dec05/krebs/index.html,
retrieved 2008-08-12.

[33] Linstone, H. A., Turoff, M.: The Delphi Method: Techniques and Applications.
Addison-Wesley (1975).

[34] Mills, H. D., Dyer, M., Linger, R. C.: Cleanroom Software Engineering. IEEE
Software 4 (5), 19-25 (1987).

[35] Baudoin, C., Hollowell, G.: Realizing the Object-Oriented Lifecycle. Prentice
Hall (1996).

[36] Belady, L. A.: Leonardo: the MCC software research project. In: Ng, P. A., Yeh,
R. T. (eds.) Modern software engineering, foundations and current perspectives.
Van Nostrand Reinhold Co., New York, NY, USA (1989).

[37] Yourdon, E., Constantine, L. L.: Structured Design: Fundamentals of a Discipline
of Computer Program and Systems Design. Prentice Hall, Englewood Cliffs, NJ,
USA (1979).

[38] David, H. A.: The Method of Paired Comparisons. Lubrecht & Cramer, Limited
(1988).

[39] Spearmint, http://www.iese.fhg.de/fhg/iese/research/quality/pam/index.jsp.

