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Abstract

Empirical knowledge from software engineering studies
is an important source for the creation of accurate simu-
lation models. This article describes the development of a
simulation model using empirical knowledge gained from
an experiment at the NASA/GSFC Software Engineering
Laboratory and from two replications at the University of
Kaiserslautern. Data and analysis results are used to iden-
tify influence dependencies between parameters, and to cal-
ibrate models. The goal of the model is the determina-
tion of the effects (i. e., defect detection efficiency) of a re-
quirements inspection process under varying contexts. The
purpose is to provide decision support for project man-
agers and process engineers when planning or changing
a development process. This article describes the system-
atic model development with a focus on the use of em-
pirical knowledge. Additionally, limitations of the model,
lessons learned, and research questions for future work are
sketched. The model performed well in an initial validation
run, with only little deviation from experimental values.

1. Introduction

Today, new and innovative software engineering tech-
niques are being developed constantly. Introducing them
into a productive environment, however, is risky, because
most effects are largely unknown. Even more importantly,
well-known techniques such as inspections are not under-
stood well enough in different contexts. Empirical software
engineering helps in determining these effects, but is rather
expensive, because experiments always require the inclu-
sion of human subjects (similar to experiments in social sci-
ences). Thus, simulation is becoming increasingly popular

in the software engineering community. Integrating empiri-
cal knowledge into simulation is an important means for the
creation of accurate models that reflect real world behav-
ior for specific contexts. Nevertheless, many existing mod-
els are based purely on hypothetic assumptions that are not
proven in real practice.

This article presents an example for the development of
a simulation model by using empirical knowledge, and de-
scribes experiences with the modeling process. The goal
is to demonstrate how empirical knowledge can be effec-
tively used for simulation modeling, and to highlight typ-
ical challenges, difficulties, and limitations. The article is
structured as follows: Section 2 motivates experiments in
software engineering and highlights benefits of simulation
modeling. Section 3 describes the empirical basis for the ex-
ample model. The model development itself is described in
Section 4, and model calibration and an extension to better
suit real-world needs is explained in Section 5. Section 6
describes a validation run with data from an independent
experiment, and Section 7 illustrates simulation results. In
Section 8, we describe limitations of our model, followed
by lessons learned. Section 9 summarizes our findings and
gives an outlook on future work.

2. Experiments and Simulation

The engineering approach for solving the main problems
in software development (time, cost, quality) proposes well
understood and systematic processes. Traditional engineer-
ing disciplines like construction or mechanical engineer-
ing demonstrated both the need for and the benefits of a
systematic process when larger projects were to be com-
pleted successfully. The same is true for software projects:
Based on empirical findings, the (in other areas) well-
known engineering principles help immensely in achieving



time, cost and quality goals [24]. Experimenting is one way
to gather empirical findings and understand the effects of
processes [4, 5]. Unfortunately, one typical characteristic of
software development processes, techniques and methods
is that their effects differ in different contexts. As a con-
sequence, whatever is proven by one experiment must not
necessarily be true for other contexts [11]. Another problem
are the costs of experiments. Introducing simulations can
help to overcome these deficiencies. According to [18, 13],
important benefits of simulation in software engineering
are cost reduction by simulating software development pro-
cesses and human behavior and by better selecting and fo-
cusing the scope of real experiments; better demonstration
of the benefits of new methods in the context of industrial
development environments; and practice-oriented learning
with respect to project planning and management (see [21]
for an example approach).

One way of creating a reasonable connection between
software process simulations and reality is the integration of
empirical data. In general, combining empirical and process
simulation knowledge can be done in the following ways:
1) Empirical knowledge is used for the development and
calibration of simulation models, 2) results from process
simulations are used for planning, designing and analyzing
real experiments, and 3) process simulation and real exper-
iments are performed in parallel (i. e., online simulation).

This paper focuses on the use of empirical knowledge for
the development and calibration of simulation models. Fol-
lowing Münch et al. [18], we apply the following two cases
of using empirical knowledge for process simulation:
1) Empirical data from controlled laboratory experiments
(trends and behavior of software development parameters)
is used for developing simulation models. This data helps to
identify patterns and relations between parameters.
2) We use empirical data to initialize the input parameters
and calibrate the simulation model.
3) Replications of empirical studies are used to increase the
significance of empirical results. Generally, using data from
replicated studies in simulation models improves the empir-
ical basis of the model and can lead to better calibrations.

3. Empirical Knowledge

The empirical knowledge used for developing the sim-
ulation model was mainly gathered from the experiments
described in [3] and [10]. The object of these experiments
is a requirements document inspection process consisting
of an individual preparation phase and a phase where the
individually detected defects are pooled together into nomi-
nal teams. The initial experiment used professional software
developers from the NASA/GSFC1 Software Engineering

1National Aeronautics and Space Administration/Goddard Space
Flight Center

Laboratory (SEL). We used data from an inspection of a
generic set of documents, comparing the usual NASA read-
ing technique with the perspective-based reading technique
(PBR). The experiment was conducted in two runs. After a
pilot run, several changes to the documents and the exper-
imental settings were made. This is why we only consider
results from the second run of the original experiment here.
The replications took place one year later at the University
of Kaiserslautern. All subjects were undergraduate students.
The requirements documents were identical to the ones used
in the initial experiment. This time, PBR was compared to
an ad-hoc approach. Although the experiments were con-
ducted to compare different reading techniques, and data
collection was driven by this purpose, we used data like the
average individual defect detection rate or team defect de-
tection rates for the development of the simulation model.

4. Simulation Model Development

The development of the simulation model followed a
method that is currently being developed [23]. First, we de-
fined the goals that we pursued with the model. Then, a
static process model was created that reflects the inspection
process. We used this static model as the basis for our dy-
namic simulation model. After that, we captured dynamic
behavior and interrelations through an influence diagram.
During this phase, we iteratively integrated empirical data
from the experiments. Finally, we built the dynamic simula-
tion model using the simulation tool Extend and calibrated
it with data from the experiments. A validation run com-
pleted the model development.

4.1. Goals

The goal was to develop an empirically-based simula-
tion model that allows for determining the effects of PBR
and ad hoc requirements inspections in specific contexts.
The intended usage of the model is to give project man-
agers and process engineers decision support when plan-
ning or changing a development process (this can be com-
bined with other decision support techniques as, for exam-
ple, described in [22]). Furthermore, the model should help
to reduce risks in introducing or changing requirements in-
spection processes by better forecasting their impacts. Sev-
eral simulation models for inspection processes exist (e. g.,
[19, 20]), which are mainly based on hypothetical assump-
tions or expert knowledge. The scientific focus of this work
was to better understand the use of quantitative empirical
knowledge for simulation model development. Therefore,
the model abstracts from several details and highlights the
use of empirical data and further results from empirical
studies.



Figure 1. The inspection process model [17].

4.2. Analysis and Creation of the Static Process
Model

Before modeling dynamic behavior, we developed a
static process model that reflects the examined real-world
process. This can be done, for instance, by descriptive soft-
ware process modeling [6]. The static model of the inspec-
tion process we used is depicted in Figure 1. The activi-
ties, products and roles are modeled according to [15]. It
is a well-known inspection process with individual prepara-
tion phases and a subsequent phase where individual defect
lists are merged into one. Software engineering literature
provides various experiments and studies where real team
meetings are held and others where only nominal teams are
examined. An overview can be found in [15]. There is no
conclusive answer on whether team meetings enhance in-
spection results or not. The two replications compared real
team meetings against nominal teams and found no increase
in defect detection effectiveness in these settings. That is the
reason why we also considered only nominal teams in our
simulation model.

4.3. Creation of the Influence Diagram

An analysis of the data provided by the experiments re-
vealed a relationship between individual defect detection
rate (iDDR), team defect detection rate (DDR), and re-
viewer know-how. The defect detection rate is defined as
percentage of the defects found with respect to all defects
(Equation 1).

defect detection rate=
number of defects found
total number of defects

(1)

iDDR indicates the individual performance of every re-
viewer, DDR specifies team performance with doubles
sorted out. The experiments confirmed that DDR rises with

iDDR, while iDDR was higher with professional software
developers than with undergraduate students.

The description of the real experiments provided further
information: the number of defects in the inspection doc-
uments was known (27/29) as well as the document size
in pages (16/17). This results in an average of about 1.7
defects per page. Additionally, document complexity could
be determined, e. g., using McCabe’s cyclomatic complex-
ity measure [16], since the documents are publicly avail-
able. We did, however, not include the number of defects as
a determinant factor in the influence diagram or the model,
because there was no empirical data available on how defect
density affects inspections.

On the reviewer side, some attributes are also known.
The original experiment used professional software devel-
opers as opposed to undergraduate students in the replica-
tion. While the number of years of experience did not cor-
relate to inspection performance, the professionals yielded
significantly higher average iDDR scores than the under-
graduate students (28.39% versus 21.08%).

We chose to base our model on average defect detection
ratios and to normalize other context information. We did
this because the experiments also concentrate on average
DDR scores. As can be seen in the influence diagram (Fig-
ure 2), iDDR values are derived directly or indirectly from
the context variables. Thus, by focusing on defect detection
ratios, we could decrease simulation complexity while at the
same time still considering the context.

In Figure 2, we included literature references for posi-
tive or negative correlations in the influence diagram. Ref-
erences named as [Us] describe relations that we introduced
to structure the model. This concerns primarily the interme-
diate attributesDocument Difficulty, EE Level(i. e., experi-
ence and expertise level) andInspector Capability. Basili et
al. [3] found that the document reviewed significantly influ-
ences individual defect detection ratios in the generic prob-
lem domain. Biffl [7] found in his experiment that inspec-



tor’s experience as well as expertise, as defined in Section
4.4, significantly influence inspection performance. Rising
document difficulty lowers the inspector’s defect detection
ability for the specific document [3], while rising experi-
ence and expertise also raise inspector capability [7]: the
better qualified an inspector is for the document to be in-
spected, the higher his individual defect detection rate can
be expected to be.

We also needed to introduce aniDDR Correction Factor
for the calculation of the team DDR. This factor symbolizes
the overlap of iDDR values combined into a team. Depend-
ing on the reading technique, the defects found by each indi-
vidual reviewer may overlap more or less due to restrictions
resulting from the chosen reading technique. A PBR tech-
nique focusing on certain defect classes for each reviewer
is more likely to yield a lower overlap than an ad-hoc tech-
nique, where every reviewer scans the complete document
for any defects. For the immediate model purpose, the vari-
ables describing the context (i. e., inspector experience and
document complexity) were not mandatory, since the con-
text is already reflected in the iDDR values. Nevertheless,
we included context variables in our model, but with neutral
behavior. They are set to values that do not influence input
iDDR values. To adapt the model to different contexts, the
context variable values can be altered accordingly, with our
context and its experiments as a reference value.

4.4. The Dynamic Model

As a first step towards modeling the influence diagram,
we modeled variables that were used in the real experi-
ments to capture real-world behavior (see Figure 2). Doc-
ument difficulty, inspector capability, and EE Level are at-
tributes defined by us in order to understand and describe
dynamic behavior. They are not reflected in the final model
as discrete blocks, but combined into some (more compre-
hensive) equations. This is purely a technical issue, their
influence remaines the same. The modeling tool provides
the possibility to create equations from discrete blocks such
asAdd or Multiply, or to enter the equation directly in an
Equationblock. This helps to reduce the number of blocks
and connections in the model implementation significantly,
thereby enhancing readability.

The following attributes are those we found to have a
major influence on inspection results. We provided scales
to measure these attributes, in order to alter their values and
thereby adapt the model to new contexts. There are other
scales that can be used, of course. In any case, it is possible
to adapt the model to various concrete measures.
Document Attributes. Document attributes characterize
the document that is to be inspected. Thus, they may differ
with every document. TheNumber of Defects (1..n)influ-
ences the number of detected defects. In a defect-free doc-

ument, no real defects can be detected, only false positives
can be expected. A false positive is a reported defect in an
actually correct part of the document. With an increasing
number of defects, the number of actually detected defects
can also rise. A natural limit can be expected at the point
where the inspected document contains so many errors that
no sensible defect detection can be done any more due to
the fact that it gets difficult to identify defects at all. If this
is the case, a document should be rejected, since it is not yet
ready to be sensibly inspected. In our model, the number
of defects is needed to visualize the effect of the inspection
in terms of defect reduction. As mentioned earlier, the orig-
inal experiments used documents with a defect density of
about 1.7 defects per page. TheDocument Size (0..2)influ-
ences the inspection in at least two ways. First, the bigger
the document gets, the more time is needed to read it and
perform the defect detection. Second, with growing docu-
ment size it becomes increasingly difficult to understand it
completely, thus impeding defect detection [9]. Since in dif-
ferent domains very different document sizes occur, it does
not seem sensible to use an absolute number here. Instead,
a relative scale is used, with 1 symbolizing an average doc-
ument size (average for the domain, company and review
team). Numbers below 1 mean that the document is smaller
than usual, while numbers above 1 mean an unusually large
document. The value of 1 in our model represents our ref-
erence document with 17 pages, but document size can also
be measured differently, of course.Document Complexity
(0..2)also influences defect detection: A complex document
may be very difficult to understand and therefore, finding
any defects at all may be hard [9]—on the other hand, it
may lead to more false positives than a very simple one.
Thus, document complexity is a key attribute in the model.
For quantifying this influence, the same considerations as
for document size apply: In different domains, very differ-
ent document complexities may appear. Therefore, the same
relative scale as for document size was chosen. In order to
use our model in different contexts, comparing document
complexities, e. g., by using McCabe’s cyclomatic complex-
ity measure [16], seems plausible.

Document Size

Experience

Document Complexity

EE Level

Expertise iDDR Correction Factor

Document Difficulty

Inspector Capability iDDR Total DDR

+ [Us]

+ [3] - [3]

+ [7]
+ [Us]

+ [Us]

+ [Us]

+ [7] + [3, 10]

Figure 2. The influence diagram for the
simulation model.



Reviewer Attributes. Reviewer attributes characterize the
reviewers. Each reviewer has different capabilities, which
must be taken into account. Reviewer attributes typically
change only slowly over time, e. g., with growing domain
knowledge. The model parameters, however, need to be ad-
justed for each different set of reviewers.Experience (0..2)
symbolizes the reviewer’s experience with inspections, the
document type, and the reading technique chosen. We as-
sume that this influences inspection performance: A re-
viewer using a new reading technique may need more time
for administrative tasks than a more experienced reviewer,
or an uncommon document type may lead to confusion,
lowering the defect detection ratio. Finally, the reading tech-
nique also influences inspection effects. For simplicity, we
measure experience on a relative scale with 1 symbolizing
average experience (in the respective context), and values
below and above symbolizing lower and higher experience.
Expertise (0..2)takes into account the domain knowledge
of the reviewer. While this might not be very important
for some defect types, it may become absolutely necessary
when looking at core system functions. When there are only
reviewers foreign to the application domain, critical defects
may go unnoticed until late in the development process.
Thus, it is expected that domain knowledge also influences
defect detection. Since the same scale problems as with ex-
perience apply to expertise as well, the same scale is used
here.Document Coverage (0..1)symbolizes how much of
the document can be covered by the reviewer in the allo-
cated inspection time. Time pressure, for instance, can be
expressed through this value. The values can be seen as per-
centage values. Normally, document coverage should be 1,
but when time pressure inhibits a thorough inspection, the
value can be lowered accordingly.Individual Defect Detec-
tion Rate (0..1)depicts the defect detection rate of every
individual reviewer. Mostly, more than one reviewer will
participate in an inspection. Thus, different individual de-
fect detection rates must be considered. If the reviewer’s
capabilities are well-known, this value can be set accord-
ingly. If only group performance has been monitored so far,
mean and standard deviation values may be introduced at
this point.

Additional Adjustment Variables. These additional input
variables we deemed necessary to better describe the con-
text of the inspection. When using a specific review tech-
nique, for example, experience with this specific technique
may be more important than domain knowledge [7]. This is
reflected in the simulation model through adjustment vari-
ables. If no special focus lies on one or more variables, all
adjustment variables except for the review correction factor
are set to 1. Lowering or raising a value increases or de-
creases the weighing of the corresponding factor relative to
the other factors. This enables us to put special emphasis on
single factors.Experience Importancedescribes the impor-

tance of reviewer experience. Experience may be especially
important in special inspection processes with tailored read-
ing techniques or special document types.Expertise Impor-
tance.If the software focuses on very special application
domains such as aviation or weapons systems, domain ex-
pertise may become relatively more important than the other
factors. This situation is reflected in this value. TheReview
Correction Factor (0..1)symbolizes the overlap of defect
detection of the individual reviewers. Thus, it can change
with the reading technique. An ad-hoc approach would have
a high overlap since no special focus is given on where or
how to detect defects, while a perspective-based approach
would have a lower overlap. Altering this value could be-
come necessary, for instance, if individual defect detection
performance for a certain reading technique is known, but
the search fields are redefined. If the new search fields sup-
posedly overlap less, this value could be increased to reflect
this context change in the model.

4.5. The Simulation Model

The model itself is realized as a discrete event model us-
ing the modeling and simulation environment Extend [14].
The document is generated with its properties, and a set of
reviewers is generated with their properties. Then their in-
dividual defect detection rates are combined into the total
defect detection rate of the (nominal) team. To illustrate the
effects, the number of defects remaining in the document is
calculated. An overview over the complete model is given
in Figure 3.

The equation block labeled “iDDR” outputs the individ-
ual defect detection rate of the reviewer adjusted to the ac-
tual process context. It uses the attributes depicted in Fig-
ure 2 and the reviewer iDDR as input parameters. In our
instantiation of the model, the block output equals input
iDDR, because the context is already reflected in the input
iDDR. The equation labeled “iDDR Correction” deals with
the fact that not all defects detected by an individual are re-
ally new defects. Some have already been found by others,
some not. Since the model is based on individual defect de-
tection rates, these detection rates decrease with an increas-
ing number of reviewers. This yields a potential problem
if the group of reviewers is very inhomogeneous. If all re-
viewers perform about the same, it does not matter which
one comes first and which one last. If there are major dif-
ferences in defect detection ratio, their starting times in the
model determines the simulation results. To eliminate this
threat, several simulation runs with random starting num-
bers should be conducted and the results then averaged.

At a certain point, adding more reviewers does not lead
to any more defects discovered. Although the number of re-
viewers needed to reach that point has not been provided by
the real experiments, we included a constraint in the model
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Figure 3. The Extend simulation model.

that discards individual defect detection success if the num-
ber of newly detected defects is smaller than one. After this
check, the final adjusted defect detection rates are totaled
up. For illustration purposes, the remaining defects are cal-
culated last.

A simulation run consists of the following steps: At sim-
ulation time 0, the document item is created and its prop-
erties are set. In our case, defects were set to the number
of defects in the reference document, while size and com-
plexity were set to 1 in order not to spoil simulation results.
The Get modules read out their respective values and pro-
vide them as input to the DDR calculation modules. Then
the document item is halted for the time the reviewer items
need to pass through the simulation.

At simulation time 1, the first reviewer item is created.
The counter is needed for decreasing the number of newly
detected defects for later reviewers. Again, the properties
are set. Experience and expertise are set to 1, again not to
spoil simulation results. We assumed a document coverage
of 100%, so the corresponding value remains 1 throughout
the simulation. Finally, iDDR gets set to values from a ran-
dom number generator initialized with mean values from
the reference experiments and a modest standard deviation
of five percentage points of iDDR. This ensures that the
simulation outputs a range of results in consecutive runs, so
that mean results and typical variation can be identified. Ex-

perience and expertise importance were both set to 1, thus
not preferring any of the two factors.

Following the setting of the reviewer properties, they are
read again and used as inputs to various equations. EE Level
adjusts the relative value of expertise and importance (Equa-
tion 2).

EE Level =
Ec · EcIm+ Et · EtIm

EcIm+ EtIm
(2)

with

Ec = Experience

EcIm = Experience Importance

Et = Expertise

EtIm = Expertise Importance

This result is combined with document size, complexity and
coverage to an adjusted iDDR, which is then written back to
the reviewer item (Equation 3), which then leaves the simu-
lation. These equations represent the respective parts of the
influence diagram.

adjusted iDDR=
EELevel· iDDR · Coverage

Size· Complexity
(3)

At simulation time 2, the next reviewer item enters the sim-
ulation and passes through the explained stages. This is re-



Table 1. Experiment Values.
Value Pilot

usual
Pilot
PBR

1995
usual

1995
PBR

Rep95
ad-hoc

Rep95
PBR

Rep96
ad-hoc

Rep96
PBR

avg. DDR (%) 44,3 62,9 48,2 62,4 41,9 52,75 32,2 47,7
avg. iDDR (%) 20,58 24,92 24,64 32,14 21,33 25,93 14,59 22,46
avg. std. deviation (% DDR) 28,61 28,61 16,07 16,07 32,07 32,07 28,5 28,5
avg. DDR - 2*iDDR (%) 3,14 13,06 -1,08 -1,88 -0,76 0,89 3,02 2,78

peated until all reviewer items have passed through the sim-
ulation. Finally, the document item is released, the remain-
ing number of defects is written back into the document,
and the item exits the simulation, which stops the simula-
tion run. All results are written to a file to simplify multiple
runs and the analysis of the results.

Simply adding up the iDDR values calculated in this
manner would, of course, lead to extremely high team
defect detection rates, which could easily exceed 100%.
Therefore, we adjusted the individual defect detection
rates for later reviewers. This adjustment is calculated in
the iDDR Correctionequation. Determining this equation
proved to be the hardest part of the modeling process. The
original experiments did not provide detailed data about in-
dividual defect detection overlap. The only available infor-
mation said that about 60% of the defects were found by
more than one reviewer when using PBR, with a tendency
to higher values when using ad-hoc techniques. This is not
surprising, since PBR techniques try to overlap search fields
only partially. While this did not give clear advice on how
to decrease iDDR ratios for consecutive reviewers, it at least
provided a general direction for defining a correctional fac-
tor. We determined the equation finally used by using data
from the real experiments.

5. Model Calibration and Extension

In order to determine model behavior and calibrate the
model, we integrated empirical data from the experiments
described in [3] and [10]. This is explained in the follow-
ing. We integrated empirical data from experiments not de-
signed to support simulation models, but to compare differ-
ent reading techniques. Therefore, we will dwell on points
of special interest. Additionally, we introduce an extension
to simplify real-world usage of the model.

5.1. Calibration

The two main data sources were the average individual
defect detection rate (iDDR) and the average nominal team
defect detection rate (DDR). Standard deviations extracted
from the original experimental data were up to twice as high
as the absolute iDDR values measured. Using these stan-
dard deviations in our model created reviewer iDDR values

that were too unstable for reasonably calibrating the model.
Therefore, we used a standard deviation of five percent-
age points of iDDR for calibration. In a real-world applica-
tion of the model, however, realistic values should be used
whenever available, since the standard deviation directly in-
fluences lowest and highest iDDR values. The values gath-
ered in the real experiments are displayed in Table 1. We
only integrated data from the 1995 run of the initial experi-
ment and the two replications into the model. After the pi-
lot run of the initial experiment, the experimenters changed
the context of the experiment. Because of this, the results
of the pilot and the other runs cannot be compared directly
and, therefore, cannot be used for model calibration. Nev-
ertheless, we had three sets of empirical data to calibrate
our simulation model. Throughout the rest of this paper, we
refer to these when we speak of experimental data. When
examining the data, we noticed that no matter which read-
ing technique was used, the average DDR was always about
twice the individual DDR (Table 1). The highest deviation
was 3.02 percentage points, with an average of 1.74. We do
not believe this to be coincidence, so we used this fact for
model calibration.

We did not model isolated defects, but relied on average
values for defect detection. We did so because it reduced
model complexity and because there was no complete data
available from all three experiment runs concerning indi-
vidual defects. Relying on average values made it more dif-
ficult to determine overlap in defect detection, though. By
overlap, we mean defects that were detected by more than
one reviewer. They increase individual DDR, but not team
DDR. When not examining single defects, there is no possi-
bility to determine how many of the defects detected by one
team member had already been detected by others. We had,
however, general information about how many of the to-
tal defects detected were found by how many persons. This
gave us a clue as to where to look for a correctional factor.

Table 2. Validation Results.
Simulation
dDDR

Remaining
Defects

Experiment
dDDR

Reality -
Simulation

26,24% 63 27,0% 0,76%
24,11% 65 25,6% 1,49%
32,96% 58 33,5% 0,54%
24,11% 65 25,7% 1,59%



We then determined a value for our data sets through sys-
tematic simulation runs with different correctional factors.

We used an exponential decrease in the defect detection
ratio. In our scenario, the first reviewer’s iDDR is added
fully to the total DDR, while the following iDDRs are de-
creased by a factor determined by the number of the respec-
tive reviewer and a review correction factor (RevCor). The
iDDR that is added to the total DDR is calculated according
to Equation 4.

final iDDR = iDDR · RevCorCount (4)

where Count is the number of the respective reviewer minus
one. Systematically testing the model with different RevCor
values, a value around 0.64 showed the lowest average de-
viation between the real experiments and the simulation re-
sults (see Figure 4). This can only be a first calibration,
of course. More data from other experiments is needed to
determine the validity of the equations we used and the
RevCor factor.

5.2. Extension

After the initial model was developed and calibrated, we
extended it to comprise a less abstract inspection process:
Usually, more than one document is inspected, and several
reviewer groups are involved. To cope with this, the ex-
tended version of the model was developed. Logically, there
is no difference between the two versions. The extended
version completely contains the initial version in that it uses
the same document and reviewer flow and calculates the
values of all variables similarly. All changes to the model
are purely a technical matter, so we do not describe the ex-
tended model in detail here. For further information on the
extended model, please refer to [2].

6. Model Validation

The model was developed to reflect a part of the real
world, so a test of the model was needed. A good test data
set would have a slightly changed context compared to the
calibration data. [8] provides such a data set. The exper-
iment originally analyzed the influence of team size and
defect detection technique on the inspection effectiveness
of a nominal team. Valid data from 169 undergraduate stu-
dents with some software engineering experience was col-
lected. The experimenters distinguished subjects using a
checklist-based approach (denoted with “C” in the follow-
ing), a scenario-based approach using the user viewpoint
(“A”), the designer viewpoint (“D”) and the tester viewpoint
(“T”). All experiment runs were preceded by appropriate
trainings.

Since the focus of the experiment was on reading tech-
nique mixes and team size, iDDR and team DDR data was

only available for two-person teams. This creates a good test
for the calculation of the document DDR value. The knowl-
edge of the test subjects should be similar to the subjects
from the replications used for calibration, since all were un-
dergraduate students. Both cases looked at a requirements
inspection in a classroom setting. The document was about
twice as large (35 compared to 16/17) as the calibration doc-
uments and contained about three times as many defects (86
compared to 27/29). This makes for an average of 2.46 de-
fects per page, which is 45 % higher than the calibration
documents (1.7). So, there are some slight context changes.

For testing purposes, only combinations of two review-
ers using the same reading technique were entered into
the model. This should prevent spoiling simulation results
caused by the combination of different reading techniques.
Translated into model parameters, this means that four
equal documents are inspected by two reviewers each: First
AA (two “A” reviewers), then TT, CC, and finally DD.
All other parameters kept their original values, including
RevCor.

7. Simulation Results

The validation simulation run resulted in document DDR
values very close to the experiment values. Table 2 gives
an overview. The rows contain the values for the AA, TT,
CC, and DD reviewer groups. The average deviation be-
tween simulation results and reality is 1.1 percentage points
of DDR, which is very good.

The overall simulation results lead to the conclusion that
the model does represent reality to a certain degree. It has
become clear that integrating empirical data into models
is a feasible way for obtaining good simulation models.
It took about three person weeks to develop the simula-
tion model, including the initial calibration and the exten-
sions for the multi-document, multi-reviewer capabilities,
with about one extra week for tool familiarization. An ar-
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Figure 4. Deviation between experiments and
simulation.



bitrary amount of time can be spent on further calibration
with different data, of course. Up to now, no information is
available on whether the model will pay off, and how many
real experiments need to be replaced by simulations until
break-even. This is also closely related to the reliability of
the simulation results.

8. Discussion

Model Limitations. Our simulation model has several lim-
itations. It describes a very abstract inspection process and
includes only few factors. A standard inspection process is
influenced by far more factors [1], most of which are not
taken into account in this model. Our model relies on av-
erage defect detection ratios only. While this works fine
for homogeneous groups of reviewers, problems arise when
reviewers with very different iDDRs are combined. With
our approach for adjusting each reviewer’s iDDR, the result
may depend on the time each reviewer starts. This threat
should be met by repeatedly running the simulation with
randomized starting times of the reviewers.

A third limitation concerns theiDDR Correctionequa-
tion. It is based on data from three experiments, testing and
intuition. It needs to be evaluated in other contexts, with
more and less reviewers, and with different iDDR values.
It served our purposes well in this model, but may be al-
tered or replaced for other experiments. The influence of the
adjustment variables influence is largely unknown as well.
Currently, all factors are included in the equations in a linear
manner. This raises questions like “With iDDR data avail-
able for a certain document size, will iDDR decrease in a
linear way with increasing document size?” These questions
will need to be answered in order to allow a reasonable and
reliable scale-up.

Finally, the model was calibrated using data from three
(similar) experiments only. Although a first validation run
seems to confirm our setup, all equations, correction factors,
and assumptions of our model need to be cross-checked in
order to come to a more generally usable simulation model.
Lessons learned.We have learned several important things
with respect to using empirical knowledge during the cre-
ation of this model. A lot of information that would have
been helpful for creating the simulation model was not
available. This was not because it is difficult to gather it,
but because we used data from experiments not designed to
fit the needs of a simulation model. With only little more
effort, the desired data could have been collected, which
would have simplified model building a great deal. This
might be an issue for the design of future experiments.

Furthermore, deriving valid equations from discrete data
points is also not an easy task. Especially the combination of
the RevCor factor and the iDDR Correction equation proved
to be difficult. Unfortunately, the experiments themselves

could not provide much helpful information. This was not
because of the experimental setup, but because of the lack
of determined interrelations between influence factors and
the amount of different contexts. We tried to overcome this
by extensively testing out ideas, but we failed to provide a
more systematic approach.

The empirical knowledge we used mainly resulted from
one experiment and two replications. Although this was
considered in the design of the replications, the contexts
were not completely identical. Additionally, we used em-
pirical knowledge from other empirical studies with differ-
ent contexts for identifying further impact dependencies. It
seems to be a challenging research field to investigate to
which extent context variations are acceptable and what the
consequences for the external validity of the model are (fur-
ther details about threats to validity can be found in [12]).
Guidance for this topic is missing. From our point of view,
a careful commonality analysis of the contexts could be a
starting point. Finally, using a visual modeling tool such
as the one we used proved to be a great help. Visualizing
the model modules and their connections allowed for effec-
tively developing the model. A text- or source code-based
model would have been significantly harder to develop.

9. Summary and Outlook

In this paper, we presented a discrete-event simula-
tion model of an inspection process. The model is based
on empirical data from an inspection experiment at the
NASA/GSFC Software Engineering Laboratory and two
replications at Kaiserslautern University. The experiments
provided data about average individual defect detection
rates of the reviewers and average total team defect detec-
tion rates. The simulation model reconstructs the inspection
process in an abstract form. Several adjustment variables al-
low for future adaptation of the model to different contexts.
The model itself is based on average defect detection ratios.

We encountered several problems during modeling and
integration of empirical knowledge. The original experi-
ments did not provide all the data we would have liked for
our model. Also, deriving valid equations from discrete data
points is not an easy task and requires extensive explorative
studies. One possible direction for future research would be
the iDDR correction/RevCor area. More data from differ-
ent experiments is needed to determine the validity of our
proposals. Another important direction would be to explore
the possibilities of adapting the model to different contexts.
Here, especially our integration of what we call the “adjust-
ment variables” could be enhanced.

Finally, more methodological support for combining em-
pirical data and simulation modeling is needed. This could
lead to a new and advanced type of experimental laboratory
that uses process simulation as a virtual capability.
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